PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reliability analysis of the PZL-130 Orlik TC-II aircr aft structural component under real operating conditions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza niezawodności elementu struktury nośnej samolotu PZL-130 Orlik TC-II w rzeczywistych warunkach eksploatacji
Języki publikacji
EN PL
Abstrakty
EN
The theme of the paper is to present development of new methods for assessing the reliability of the aircraft structure. Based on the described mathematical models , the author developed the “Aircraft Structural Reliability Assessment” (AStRAss) computer software, which implements the realized mathematical model. The aim of the software is calculation of aircraft structure reliability. In this contribution the failure rate of the selected location within the structure of the PZL-130 Orlik TC-II under real operating conditions were calculated. For the chosen control point within the structure the sensitivity of failure rate to the input data was investigated.
PL
Tematem publikacji jest przedstawienie opracowanej metody oceny niezawodności struktury nośnej statków powietrznych. Wykorzystując opisane modele matematyczne stworzono autorskie oprogramowanie komputerowe Aircraft Structural Reliability Assessment (AStRAss), implementujące opracowany model w celu obliczenia niezawodności struktury nośnej statków powietrznych. W niniejszej pracy określono chwilową intensywność uszkodzeń w wybranym miejscu struktury samolotu PZL-130 TC II Orlik dla rzeczywistych warunków eksploatacji. Dla wybranego punktu kontrolnego przedstawiono w pracy również analizę wrażliwości wyników na zmiany istotnych parametrów wejściowych.
Rocznik
Strony
287--295
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • Division of Fundamentals of Machine Design Warsaw University of Technology ul. Nowowiejska 24, 00-665 Warsaw, Poland
Bibliografia
  • 1. Babish C. Application of risk & reliability analysis for fatigue cracking in F-16 aircraft structure. Technical report, 2010 F-16 ASIP.
  • 2. Bedford T. Cooke R. Probabilistic Risk Analysis Foundations and Methods. Cambridge: Cambridge University Pressn, 2001, https://doi.org/10.1017/CBO9780511813597.
  • 3. Devroye L. Non- Uniform Random Variate Generation. Springer-Verlag New York Berlin Heidelberg Tokyo, Harrisonburg, Virginia, United States of America, 1986, https://doi.org/10.1007/978-1-4613-8643-8.
  • 4. Dixon B. Molent L. Ex-Service F/A-18 Centre Barrel Fatigue Flaw Identification Test Plan. Melbourne: DSTO Platforms Sciences Laboratory, 2003.
  • 5. Gallagher J. Babish C. Malas J. Damage Tolerant Risk Analysis Techniques for Evaluating the Structural Integrity of Aircraft Structures. 11th International Conference on Fracture 2005; 1: 71-76.
  • 6. Hinz M. Luecker A. Knuebel G. Bracke S. Reliability Analysis of Organic Fibres using Limited Data. 2015 61ST Annual Reliability And Maintainability Symposium (RAMS 2015), 2015.
  • 7. Hinz M. Hienzsch F. Bracke S. Analysis of Simulated and Recorded Data of Car Fleets Based on Machine Learning Algorithms. 13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) in prep. 2016.
  • 8. Jankowski K. Reymer P. Simulating crack propagation of the selected PZL-130 ORLIK TC-II aircraft structural component. Fatigue of Aircraft Structures 2014; 1(6): 119-127, https://doi.org/10.1515/fas-2014-0013.
  • 9. Koucky M. Valis D. Reliability of sequential systems with a restricted number of renewals. Proceedings and Monographs in Engineering, Water and Earth Sciences 2007; 1845-1849.
  • 10. Leski A. An Algorithm of Selecting a Representative Load Sequence for a Trainer. 2nd International Conference on Engineering Optimization 2010; CD: 1-8.
  • 11. Leski A. Reymer P. Kurdelski M. Development of Load Spectrum for Full Scale Fatigue Test of a Trainer Aircraft. ICAF 2011 Structural Integrity: Influence of Efficiency and Green Imperatives 2011: 573-584.
  • 12. Liao M. Bombardier Y. Renaud G. Bellinger N. Cheung T. Development of advanced risk assessment methodologies for aircraft structures containing MSD/MED. ICAF 2009 Bridging the Gap between Theory and Operational Practice 2009: 811-837.
  • 13. Miedlar P. Berens A. Hovey P. Boehnlein T. Loomis J. PRoF v3 PRobability Of Fracture Aging Aircraft Risk Analysis Update. Dayton: University of Dayton Research Institute, 2005.
  • 14. MIL-STD-882E, Department of Defense, Standard Practice For System Safety 2012.
  • 15. Podskarbi S. Leski A. Reymer P. Jankowski K. Kurdelski M. Stefaniuk M. Obliczenia stanu naprężenia oraz obliczenia szybkości wzrostu pęknięć dla CP z wykorzystaniem rzeczywistych widm obciążeń eksploatacyjnych. Sprawozdanie nr SP-58/31/2014. Warsaw: Air Force Institute of Technology, 2014.
  • 16. Reymer P. Jankowski K. Kłysz S. Lisiecki J. Leski A. Crack propagation of the selected PZL-130 Orlik TC-II aircraft structural component based on laboratory test results. Proceedings of the Fourth Asian Conference on Mechanics of Functional Materials and Structures 2014, 181-184.
  • 17. Reymer P. Leski A. Flight Loads Acquisition for PZL-130 ORLIK TCII Full Scale Fatigue Test. Fatigue of Aircraft Structures 2011; 3: 78-85, https://doi.org/10.2478/v10164-010-0041-7.
  • 18. Rudd J. Yang J. Manning S. Garver W. Durability Design Requirements and Analysis for Metallic Airframes. Design of Fatigue and Fracture Resistant Structures, ASTM STP 761, American Society for Testing and Materials l982; 133-151.
  • 19. Skinn D. A. Gallagher J. P. Berens A. P. Huber P. D. Smith J. Damage Tolerant Design Handbook. Wright Laboratory, Wright Patterson AFB, Ohio 45433-7734, 1994.
  • 20. Taboga M. Lectures on Probability Theory and Mathematical Statistics - 2nd Edition, second ed. CreateSpace Independent Publishing Platform, 2012.
  • 21. Tomaszek H. Jasztal M. Zieja M. Application of the Paris formula with m=2 and the variable load spectrum to a simplified method for evaluation of reliability and fatigue life demonstrated by aircraft components. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2013; 4: 297-303.
  • 22. Tomaszek H. Zieja M. Wazny M. A method for reliability assessment of structural components of aircraft and sea-going ships with taking into account a given failure generation model. Polish Maritime Research 2016; 2(23): 83-90.
  • 23. Valis D. Koucky M. Zak L. On approaches for non-direct determination of system deterioration. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2012; 1: 33-41.
  • 24. Valis D. Vintr Z. Dependability of mechatronics systems in military vehicle design. Proceedings and Monographs in Engineering, Water and Earth Sciences 2006; 1703-1707.
  • 25. Valis D. Vintr Z. Koucky, M. Contribution to highly reliable items' reliability assessment. Reliability, Risk and Safety: Theory and Applications 2010; 1-3: 1321-1326.
  • 26. White P. Molent L. Barter S. Interpreting fatigue test results using a probabilistic fracture approach. International Journal of Fatigue 2005; 27: 752–767, https://doi.org/10.1016/j.ijfatigue.2005.01.006.
  • 27. Zieja M, Ważny M, Stępień S. Distribution determination of time of exceeding permissible condition as used to determine lifetimes of selected aeronautical devices/systems. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18 (1): 57–64, http://dx.doi.org/10.17531/ein.2016.1.8.
  • 28. Zurek J. Tomaszek H. Zieja M. Analysis of structural component's lifetime distribution considered from the aspect of the wearing with the characteristic function applied. Safety, Reliability and Risk Analysis: Beyond the Horizon 2014; 2597-2602.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f9410c1-3710-473d-b1a8-b1c8aa94eac8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.