Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
The concepts of stability of foods with low and intermediate water content
Języki publikacji
Abstrakty
W artykule przedstawiono aktualne koncepcje oceny stabilności żywności o małej i średniej zawartości wody. Omówiono zasady dwóch koncepcji: aktywności wody oraz temperatury przemiany szklistej i możliwości ich skojarzenia w oceny stabilności żywności. Przedstawiono również koncepcję makro- i mikroobszarów żywności na wykresie stanu. Ponadto zdefiniowano i omówiono koncepcję temperatury krytycznej.
The article presents the current concepts of assessing the stability of foods with low and intermediate water content. The principles of water activity and glass transition concepts were described and the possibilities of combining these concepts to assess food stability were discussed. There was also presented the macro-micro region concept of foods in the state diagram. Moreover, the critical temperature concept for food stability was defined and discussed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
24--28
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- Wydział Nauk o Żywności, SGGW, Warszawa
Bibliografia
- [1] Bone D.P.: 1987. Practical applications of water activity and moisture relations in foods. Water Activity: Theory and applications to food (eds. Rockland L.B., Beuchat L.R.), Marcel Dekker, Inc., New York and Basel, 369-395.
- [2] Caurie M.: 1971a. A practical approach to water sorption isotherms and the basis for the determination of optimum moisture levels of dehydrated foods. Journal of Food Technology 6(1), 85-93.
- [3] Ferry J.D.: 1980. Viscoelastic properties of polymers. John Wiley and Sons, New York.
- [4] Goula A.M., Karapantsios T.D., Achilias D.S., Adamopoulos K.G.: 2008. Water sorption isotherms and glass transition temperature of spray dried tomato pulp. Journal of Food Engineering 85, 73-83.
- [5] Karel M., Anglea S., Buera P., Karmas R., Levi G., Roos Y.: 1994. Stability-related transitions of amorphous foods. Thermochimica Acta 246, 249-269.
- [6] Leistner L.: 2000. Hurdle technology in the disign of minimalny processed foods. In: Minimalny processed friuts and vegetables (eds. S.M. Alzamora, M.S. Tapia, A. Lopez-Malo). Maryland: Aspen Publication, 13-24.
- [7] Levine H., Slade L.: 1986. A polymer physico-chemival approach to the study of commercial starch hydrolysis products (SHPs). Carbohydrate Polymer 6, 213-244.
- [8] Lewicki P.P.: 2004. Water as the determinant of food engineering properties. A review. Journal of Food Engineering 61(4), 483-495.
- [9] Moraga G., Martinez-Navarrete N., Chiralt A.: 2004. Water sorption isotherm and glass transition in strawberries: influence of pretreatment. Journal of Food Engineering 62, 315-321.
- [10] Moraga G., Talens P., Moraga M.J., Martinez-Navarrete N.: 2011. Implication of water activity and glass transition on the mechanical and optical properties of freeze-dried apple and banana slices. Journal of Food Engineering 106, 212-219.
- [11] Pałacha Z.: 2008. Aktywność wody – ważny parametr trwałości żywności. Przemysł Spożywczy 62(4), 22-26.
- [12] Pałacha Z., Sitkiewicz I.: 2008. Temperatura przemiany szklistej – parametr stabilności żywności. Przemysł Spożywczy 62(9), 32-37.
- [13] Rahman M.S.: 2006. State diagram of foods: Its potential use in food processing and product stability. Trends in Food Science and Technology 17, 129-141.
- [14] Rahman M.S.: 2009. Food stability beyond water activity and glass transition: macro-mikro region concept in the state diagram. International Journal of Food Properties 12(4), 726-740.
- [15] Rahman M.S.: 2010. Food stability determination by macro-micro region concept in the state diagram and by defining a critical temperature. Journal of Food Engineering 99, 402-416.
- [16] Rahman M.S.: 2012. Applications of macro-micro region concept in the state diagram and critical temperature concepts in determining the food stability. Food Chemistry 132, 1679-1685.
- [17] Rahman M.S., Labuza T.P.: 1999. Water activity and food preservation (ed. M.S. Rahman), Handbook of Food Preservation. Marcel Dekker, New York, 339-382.
- [18] Roos Y., Karel M.: 1991. Applying state diagrams to food processing and development. Food Technology 45(12), 66, 68-71, 107.
- [19] Scott W.J.: 1957. Water relations of food spoilage microorganisms. Advances in Food Research 7, 83-124.
- [20] Slade L., Levine H.: 1988. Non-equilibrium behavior of small carbohydrate-water systems. Pure Applied Chemistry 60, 1841-1864.
- [21] Slade L., Levine H.: 1991. Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Critical Reviews in Food Science and Nutrition 30 (2-3), 115-360.
- [22] Syamaladevi R.M., Sablani S.S., Tang J., Powers J., Swanson B.G.: 2009. State diagram and water adsorption isotherm of raspberry (Rubus idaeus). Journal of Food Engineering 91, 460-467.
- [23] Telis V.R.N., Sobral P.J.A., Telis-Romero J.: 2006. Sorption isotherm, glass transition and state diagram for freeze-dried plum skin and pulp. Food Science and Technology International 12(3), 181-187.
- [24] Telis V.R.N., Martinez-Navarrete N.: 2010. Application of compression test in analysis of mechanical and color changes in grapefruit juice powder as related to glass transition and water activity. LWT – Food Science and Technology 43(5), 744-751.
- [25] Wolf W.R., Spiess W.E.L., Jung G., Weisser H., Bizot H., Duckworth R.B.: 1984. The water vapour sorption isotherms of microcrystalline cellulose (MCC) and of purified potato starch: results of a collaborative study. Journal of Food Engineering 3(1), 51-72.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f8f7dd1-7efa-419d-b3ed-5e4fd17bf3b5