PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Multi-Spectral Index from Sentinel-2 Data for Extracting Build-up Land of Hanoi Area in the Dry Season

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie wielospektralnego indeksu z danych Sentinel-2 do ekstrakcji terenów zabudowanych w rejonie Hanoi w sezonie suchym
Języki publikacji
EN
Abstrakty
EN
A remote sensing index is a simple and effective way to highlight a specific land cover. Therefore, in this study, we try to increase the accuracy of the urban land map developed for Hanoi city by focusing on determining the appropriate combination of spectral indices calculated from satellite image data. To conduct the study, four spectral indices were selected including namely normalized difference tillage index (NDTI), bare soil index (BSI), dry bare soil index (DBSI) and the normalized difference vegetation index (NDVI). All these spectral indices are calculated from Sentinel-2 data acquired in the dry season. The two combinations are created from the superposition of NDTI/BSI/NDVI and NDTI/DBSI/NDVI spectral index layers. The use of the “K-means” algorithm as an unsupervised classifier provides rapid and automatic urban land detection. The results show that the BSI index performs better than using the DBSI index. As a result, the BSI index brings improvements: bare soil types and accumulation processes are better differentiated, with overall accuracy increasing by 5.82% and Kappa coefficient increasing by 11.1%. The results show that the NDTI/BSI/NDVI multi-spectral index dataset is suitable for mapping urban areas with the potential to help better urban management during the dry season.
PL
Wskaźnik zdalnego wykrywania jest prostym i skutecznym sposobem na wyróżnienie określonego pokrycia terenu. Dlatego w tym bada-niu staramy się zwiększyć dokładność mapy terenów miejskich opracowanej dla miasta Hanoi, skupiając się na określeniu odpowiedniego połączenia wskaźników spektralnych obliczanych z danych obrazów satelitarnych. Do przeprowadzenia badania wybrano cztery wskaźniki spektralne, a mianowicie znormalizowany wskaźnik różnicy uprawy (NDTI), wskaźnik gołej gleby (BSI), wskaźnik suchej gołej gleby (DBSI) i znormalizowany wskaźnik różnicy wegetacji (NDVI). Wszystkie te wskaźniki spektralne są obliczane z danych Sentinel-2 uzyskanych w sezonie suchym. Dwie kombinacje są tworzone z nakładania się warstw wskaźników spektralnych NDTI/BSI/NDVI i NDTI/DBSI/NDVI. Użycie algorytmu “K-means” jako klasyfikatora nienadzorowanego zapewnia szybkie i automatyczne wykrywanie terenów miejskich. Wyniki pokazują, że wskaźnik BSI działa lepiej niż użycie wskaźnika DBSI. W rezultacie wskaźnik BSI przynosi poprawki: typy gołej gleby i procesy akumulacji są lepiej zróżnicowane, a ogólna dokładność wzrasta o 5,82%, a współczynnik Kappa wzrasta o 11,1%. Wyniki pokazują, że zestaw danych wielospektralnych wskaźników NDTI/BSI/NDVI jest odpowiedni do mapowania obszarów miejskich z potencjałem pomocy w lepszym zarządzaniu miastem podczas sezonu suchego.
Rocznik
Strony
63--70
Opis fizyczny
Bibliogr. 33 poz., tab., wykr., zdj.
Twórcy
  • Hanoi university of Mining and Geology
  • Geomatics in Earth Sciences Research Group, Hanoi University of Mining and Geology, 18 Vien Str., Duc Thang Ward, Hanoi 100000, Vietnam
  • Dong Thap University
  • Hanoi university of Mining and Geology
  • Geomatics in Earth Sciences Research Group, Hanoi University of Mining and Geology, 18 Vien Str., Duc Thang Ward, Hanoi 100000, Vietnam
autor
  • Hanoi university of Mining and Geology
Bibliografia
  • 1. Azad Rasul et al,.2018. Applying Built-Up and Bare-Soil Indices from Landsat 8 to Cities in Dry Climates. Land, 7, 81; doi:10.3390/land7030081
  • 2. Bouzekri, S., Aziz Lasbet, A., Lachehab, A. 2015. A New Spectral Index for Extraction of BuiltUp Area Using Landsat-8 Data. Journal of the Indian Society of Remote Sensing, 43. https://doi.org/10.1007/s12524-015-0460-6
  • 3. Bramhe, V., Ghosh, S., Garg, P. 2018. Extraction of builtup area by combining textural features and spectral indices from Land-sat-8 multispectral image. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5, 727-733. https://doi.org/10.5194/isprsarchives-XLII-5-727-2018
  • 4. Deng, C., Wu, C. 2012. BCI: A biophysical composition index for remote sensing of urban environments. Remote Sensing of Environment, 127, 247-259. https://doi.org/10.1016/j.rse.2012.09.009
  • 5. Ettehadi Osgouei, P., Kaya, S., Sertel, E., Alganci, U. 2019. Separating Built-Up Areas from Bare Land in Mediterranean Cities Using Sentinel-2A Imagery. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030345
  • 6. Rasul, A., Balzter, H., Ibrahim, G.R.F., Hameed, H.M., Wheeler, J., Adamu, B.,... Najmaddin, P.M. 2018. Applying Built-Up and Bare-Soil Indices from Landsat 8 to Cities in Dry Climates. Land, 7(3), 81. https://doi.org/10.3390/land7030081
  • 7. S.Vigneshwaran, S.Vasantha Kumar, 2018. Extraction of built-up area using high resolution sentinel-2A and google satellite imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W9, International Conference on Geomatics and Geospatial Technology (GGT 2018), 3–5 September 2018, Kuala Lumpur, Malaysia
  • 8. V. S. Bramhe1,* et al., 2018. Extraction of built-up area by combining textural features and spectral indices from landsat-8 multispectral image. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehra-dun, India
  • 9. Li, H., Wang, C., Zhong, C., Su, A., Xiong, C., Wang, J., Liu, J. 2017. Mapping Urban Bare Land Automatically from Landsat Imagery with a Simple Index. Remote Sensing, 9(3), 249. https://doi.org/10.3390/rs9030249
  • 10. Jieli, C., Manchun, L., Yongxue, L., Chenglei, S., Wei, H. 2010. Extract residential areas automatically by New Built-up Index. In Proceedings of the 18th International Conference on Geoinformatics, Beijing, China. https://doi.org/10.1109/GEOINFOR-MATICS.2010.5567823
  • 11. Deng, C., Wu, C. 2012. BCI: A biophysical composition index for remote sensing of urban environments. Remote Sensing of Environment, 127, 247-259. https://doi.org/10.1016/j.rse.2012.09.009
  • 12. Eskandari, I., Navid, H., Rangzan, K. 2016. Evaluating spectral indices for determining conservation and conventional tillage systems in a vetch-wheat rotation. International Soil and Water Conservation Research, 4(2), 93-98. https://doi.org/10.1016/j.iswcr.2016.04.002
  • 13. Rikimaru, A., Miyatake, S. 1997. Development of Forest Canopy Density Mapping and Monitoring Model using Indices of Vegetation, Bare soil and Shadow. Paper presented at the Proceedings of the 18th Asian Conference on Remote Sensing (ACRS) 1997, Kuala Lumpur, Malaysia.
  • 14. Sun, G., Chen, X., Jia, X., Yao, Y., Wang, Z. 2016. Combinational Build-Up Index (CBI) for Effective Impervious Surface Mapping in Urban Areas. IEEE Journal of selected topics in applied earth observations and remote sensing, 9(5), 2081-2092. https://doi.org/10.1109/JSTARS.2015.2478914
  • 15. Waqar, M., Mirza, J., Mumtaz, R., Hussain, E. 2012. Development of New Indices for Extraction of Built-Up Area & Bare Soil from Landsat Data. Open Access Scientifc Reports, 1(1), 01-04
  • 16. Xi, Y., Thinh, N.X., Li, C. 2019. Preliminary comparative assessment of various spectral indices for built-up land derived from Landsat-8 OLI and Sentinel-2A MSI imageries. European Journal of Remote Sensing, 52, 240-252. https://doi.org/10.1080/22797254.2019.1584737
  • 17. Xu, H. 2008. A new index for delineating built-up land features in satellite imagery. International Journal of Remote Sensing, 29, 4269-4276. https://doi.org/10.1080/01431160802039957
  • 18. Nur Hidayati, I., Suharyadi, R., Danoedoro, P. 2018. Developing an Extraction Method of Urban BuiltUp Area Based on Remote Sensing Imagery Transformation Index. Forum Geograf, 32. https://doi.org/10.23917/forgeo.v32i1.5907
  • 19. Xi, Y., Thinh, N.X., Li, C. 2019. Preliminary comparative assessment of various spectral indices for built-up land derived from Landsat-8 OLI and Sentinel-2A MSI imageries. European Journal of Remote Sensing, 52, 240-252. https://doi.org/10.1080/22797254.2019.1584737
  • 20. Pal, M., Antil, K. 2017. Comparison of Landsat 8 and Sentinel 2 data for Accurate Mapping of Built-Up Area and Bare Soil. Paper presented at the 38th Asian Conference on Remote Sensing, New Delhi, India.
  • 21. Valdiviezo-N, J., Téllez-Quiñones, A., Salazar-Garibay, A., López-Caloca, A. 2018. Built-up index methods and their applica-tions for urban extraction from Sentinel 2A satellite data: discussion. Journal of the Optical Society of America A, 35, 35-44. https://doi.org/10.1364/JOSAA.35.000035
  • 22. Rikimaru, A., Miyatake, S. 1997. Development of Forest Canopy Density Mapping and Monitoring Model using Indices of Vegetation, Bare soil and Shadow. Paper presented at the Proceedings of the 18th Asian Conference on Remote Sensing (ACRS) 1997, Kuala Lumpur, Malaysia.
  • 23. Daughtry, C.S.T., Serbin, G., Reeves, J.B., Doraiswamy, P.C., Hunt, E.R. 2010. Spectral Reflectance of Wheat Residue during De-composition and Remotely Sensed Estimates of Residue Cover. Remote Sensing, 2(2), 416-431. https://doi.org/10.3390/rs2020416
  • 24. Ettehadi Osgouei, P., Kaya, S., Sertel, E., Alganci, U. 2019. Separating Built-Up Areas from Bare Land in Mediterranean Cities Using Sentinel-2A Imagery. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030345
  • 25. Deventer, A., Ward, A.D., Gowda, P.H., Lyon, J.G. 1997. Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices, Photogrammetric Engineering and Remote Sensing, 63(1), 87-93.
  • 26. F. Spoto et al., "Overview Of Sentinel-2," 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012, pp. 1707-1710, doi: 10.1109/IGARSS.2012.6351195.
  • 27. A. K. Bhandaria, A. Kumara, and G. K. Singhb,*. Feature Extraction using Normalized Difference Vegetation Index (NDVI): a Case Study of Jabalpur City. Procedia Technology 6, 612 – 621. doi: 10.1016/j.protcy.2012.10.074
  • 28. Zuur, A.F., Ieno, E.N., Smith, G.M. 2007. Principal component analysis and redundancy analysis. In Analysing Ecological Data. Statistics for Biology and Health. Springer, New York, NY. pp. 193-224. https://doi.org/10.1007/978-0-387-45972-1
  • 29. MacQueen, J. 1967. Some Methods for Classifcation and Analysis of Multivariate Observations. Paper presented at the In L.M. Le Cam & J. Neyman (eds.) Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley, CA, USA.
  • 30. Gllavata, J., Ewerth, R., Freisleben, B. 2004. Text detection in images based on unsupervised classifcation of high-frequency wavelet coeffcients. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. https://doi.org/10.1109/ICPR.2004.1334146
  • 31. Gašparović, M., Zrinjski, M., Gudelj, M. 2019. Automatic cost-effective method for land cover classifcation (ALCC). Computers, Environment and Urban Systems, 76, 1-10. https://doi.org/10.1016/j.compenvurbsys.2019.03.001
  • 32. Congalton, R. 1991. A Review of Assessing the Accuracy of Classifcations of Remotely Sensed Data (Vol. 37). https://doi.org/10.1016/0034-4257(91)90048-B
  • 33. Foody, G.M. 2002. Status of land cover classifcation accuracy assessment. Remote Sensing of Environment, 80(1), 185-201. https://doi.org/10.1016/S0034-4257(01)00295-4
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f82d80b-c071-4150-8e08-68b31e70faee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.