PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the degree of polymerization of nonylphenol polyoxyethylene ether on the dewatering of low-rank coal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we investigated the effect of the hydrophilic ethylene oxide chain lengths (i.e., degree of polymerization) of nonylphenol polyoxyethylene ether (NPEO-x, x = 8, 10, and 12) on the dewatering of low-rank coal slime through dewatering and adsorption experiments and X-ray photoelectron spectroscopy (XPS) measurements. The dewatering experiments showed that the adsorption of NPEO changed the water content of the low-rank coal slime: NPEO-8 achieved the best effect, followed, in decreasing order, by NPEO-10 and NPEO-12. Adsorption experiments revealed that the adsorption isotherms of NPEO-x on the low-rank coal surface conform with the Langmuir model, and its adsorption kinetics follow the pseudo-second-order kinetic equation. Furthermore, the adsorption is a spontaneous process and controlled by both intraparticle diffusion and liquid film diffusion. The XPS results showed that the adsorption of NPEO-x decreased the content of oxygencontaining groups and, thus, improved the hydrophobicity of the low-rank coal surface. Further, the use of NPEO-x with a low degree of polymerization (x = 8) improves the hydrophobicity of the coal surface and decreases the water content of low-rank coal slime.
Słowa kluczowe
Rocznik
Strony
723--736
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
  • College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
  • College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
autor
  • College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
  • College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
  • National Engineering Laboratory for Coalmine Backfilling Mining, Shandong University of Science and Technology, Tai’an, Shandong 271019, China
autor
  • College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
Bibliografia
  • AHAMAD, K. U., SINGH, R., BARUAH, I., CHOUDHURY, H., SHARMA, M. R., 2018. Equilibrium and kinetics modeling of fluoride adsorption onto activated alumina, alum and brick powder. Groundwater for Sustainable Development, 7, 452-458.
  • AHMET, G., SAMIH, B., KEMAL, D., M. SAHIN, G., 1995. Adsorption of CTAB at lignite-aqueous solution interface. Fuel Processing Technology, 45(2), 75-84.
  • BERGINS, C., HULSTON, J., STRAUSS, K., CHAFFEE, A. L., 2007. Mechanical/thermal dewatering of lignite. Part 3: Physical properties and pore structure of MTE product coals. Fuel, 86(1-2), 3-16.
  • CACERES-JENSEN, L., RODRIGUEZ-BECERRA, J., PARRA-RIVERO, J., ESCUDEY, M., BARRIENTOS, L., CASTRO-CASTILLO, V., 2013. Sorption kinetics of diuron on volcanic ash derived soils. J Hazard Mater, 261, 602-613.
  • CHENG, J. Y., WANG, P., MA, J. P., LIU, Q. K., DONG, Y. B., 2014. A nanoporous Ag(I)-MOF showing unique selective adsorption of benzene among its organic analogues. Chem Commun (Camb), 50(89), 13672-13675.
  • DEMIRBAS, A., SARI, A., ISILDAK, O., 2006. Adsorption thermodynamics of stearic acid onto bentonite. J Hazard Mater, 135(1-3), 226-231.
  • GROPPO, J. G., PAREKH, B. K., 1996. Pilot-Scale Evaluation of Hyperbaric Filtration of Ultra Fine Clean Coal. Coal Preparation, 17(1-2), 61-70.
  • HAMEED, B. H., EL-KHAIARY, M. I., 2008a. Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K(2)CO(3) activation and subsequent gasification with CO(2). J Hazard Mater, 157(2-3), 344-351.
  • HAMEED, B. H., EL-KHAIARY, M. I., 2008b. Kinetics and equilibrium studies of malachite green adsorption on rice strawderived char. J Hazard Mater, 153(1-2), 701-708.
  • HAMEED, B. H., SALMAN, J. M., AHMAD, A. L., 2009. Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. J Hazard Mater, 163(1), 121-126.
  • HAO, S. X., LIU, X. Y., YU, Z. X., 2013. Effect of Deashing Treatment on the Coal Structure and Surface Groups. Advanced Materials Research, 803, 330-333.
  • HULSTON, J., FAVAS, G., CHAFFEE, A. L., 2005. Physico-chemical properties of Loy Yang lignite dewatered by mechanical thermal expression. Fuel, 84(14-15), 1940-1948.
  • LE ROUX, M., CAMPBELL, Q. P., WATERMEYER, M. S., DE OLIVEIRA, S., 2005. The optimization of an improved method of fine coal dewatering. Minerals Engineering, 18(9), 931-934.
  • LIU, S., CHEN, M., CAO, X., LI, G., ZHANG, D., LI, M., MENG, N., YIN, J., YAN, B., 2020. Chromium (VI) removal from water using cetylpyridinium chloride (CPC)-modified montmorillonite. Separation and Purification Technology, 241, 116732.
  • LIU, X., LIU, S., FAN, M., ZHANG, L., 2017. Decrease of hydrophilicity of lignite using CTAB: Effects of adsorption differences of surfactant onto mineral composition and functional groups. Fuel, 197, 474-481.
  • LIU, Y., 2009. Is the Free Energy Change of Adsorption Correctly Calculated. Journal of Chemical & Engineering Data, 54(7), 1981-1985.
  • LYU, X., YOU, X., HE, M., ZHANG, W., WEI, H., LI, L., HE, Q., 2018. Adsorption and molecular dynamics simulations of nonionic surfactant on the low rank coal surface. Fuel, 211, 529-534.
  • ONAL, Y., AKMIL-BASAR, C., SARICI-OZDEMIR, C., 2007. Investigation kinetics mechanisms of adsorption malachite green onto activated carbon. J Hazard Mater, 146(1-2), 194-203.
  • OYELUDE, E. O., AWUDZA, J. A. M., TWUMASI, S. K., 2017. Equilibrium, Kinetic and Thermodynamic Study of Removal of Eosin Yellow from Aqueous Solution Using Teak Leaf Litter Powder. Sci Rep, 7(1), 12198.
  • PEDRO SILVA, J., SOUSA, S., RODRIGUES, J., ANTUNES, H., PORTER, J. J., GONçALVES, I., FERREIRA-DIAS, S., 2004. Adsorption of acid orange 7 dye in aqueous solutions by spent brewery grains. Separation and Purification Technology, 40(3), 309-315.
  • SAHA, T. K., KARMAKER, S., ICHIKAWA, H., FUKUMORI, Y., 2005. Mechanisms and kinetics of trisodium 2-hydroxy-1,1'-azonaphthalene-3,4',6-trisulfonate adsorption onto chitosan. J Colloid Interface Sci, 286(2), 433-439.
  • ŞAHIN, S., EMIK, S., 2018. Fast and highly efficient removal of 2,4-D using amino-functionalized poly (glycidyl methacrylate) adsorbent: Optimization, equilibrium, kinetic and thermodynamic studies. Journal of Molecular Liquids, 260, 195-202.
  • SINGH, B. P., 1997. The influence of surface phenomena on the dewatering of fine clean coal. Filtration & Separation, 34(2), 159-163.
  • SINGH, B. P., 1999. The role of surfactant adsorption in the improved dewatering of fine coal. Fuel, 78(4), 501-506.
  • SINGH, B. P., BESRA, L., REDDY, P. S. R., SANGUPTA, D. K., 1998. Use of surfactants to aid the dewatering of fine clean coal. Fuel, 77(12), 1349-1356.
  • SIS, H., CHANDER, S., 2003. Adsorption and contact angle of single and binary mixtures of surfactants on apatite. Minerals Engineering, 16(9), 839-848.
  • STROH, G., STAHL, W., 1990. Effect of surfactants on the filtration properties of fine particles. Filtration & Separation, 27(3), 0-199.
  • SUN, X. F., WANG, S. G., LIU, X. W., GONG, W. X., BAO, N., GAO, B. Y., ZHANG, H. Y., 2008. Biosorption of Malachite Green from aqueous solutions onto aerobic granules: kinetic and equilibrium studies. Bioresour Technol, 99(9), 3475-3483.
  • TAFFAREL, S. R., RUBIO, J., 2009. On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites. Minerals Engineering, 22(4), 336-343.
  • TAO, D., GROPPO, J. G., PAREKH, B. K., 2000. Enhanced ultrafine coal dewatering using flocculation filtration processes. Minerals Engineering, 13(2), 163-171.
  • VADIVELAN, V., KUMAR, K. V., 2005. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interface Sci, 286(1), 90-100.
  • VAZIRI HASSAS, B., KARAKAŞ, F., ÇELIK, M. S., 2014. Ultrafine coal dewatering: Relationship between hydrophilic lipophilic balance (HLB) of surfactants and coal rank. International Journal of Mineral Processing, 133, 97-104.
  • VOGT, C., WILD, T., BERGINS, C., STRAUß, K., HULSTON, J., CHAFFEE, A. L., 2012. Mechanical/thermal dewatering of lignite. Part 4: Physico-chemical properties and pore structure during an acid treatment within the MTE process. Fuel, 93, 433-442.
  • XIAO, F., YAN, B.-Q., ZOU, X.-Y., CAO, X.-Q., DONG, L., LYU, X.-J., LI, L., QIU, J., CHEN, P., HU, S.-G., ZHANG, Q.-J., 2020. Study on ionic liquid modified montmorillonite and molecular dynamics simulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 587, 124311.
  • XU, Y., LIU, Y.-L., HE, D.-D., LIU, G.-S., 2013. Adsorption of cationic collectors and water on muscovite (001) surface: A molecular dynamics simulation study. Minerals Engineering, 53, 101-107.
  • YOON, R.-H., ASMATULU, R., ISMAIL YILDIRIM, JANSEN, W., ZHANG, J., ATKINSON, B., HAVENS, J. (2004). Development of Dewatering Aids for Minerals And Coal Fines. Retrieved from United States:
  • YOU, X., HE, M., CAO, X., WANG, P., WANG, J., LI, L., 2019. Molecular dynamics simulations of removal of nonylphenol pollutants by graphene oxide: Experimental study and modelling. Applied Surface Science, 475, 621-626.
  • YOU, X., HE, M., ZHANG, W., WEI, H., LYU, X., HE, Q., LI, L., 2018. Molecular dynamics simulations of nonylphenol ethoxylate on the Hatcher model of subbituminous coal surface. Powder Technology, 332, 323-330.
  • YOU, X., HE, M., ZHU, X., WEI, H., CAO, X., WANG, P., LI, L., 2019. Influence of surfactant for improving dewatering of brown coal: A comparative experimental and MD simulation study. Separation and Purification Technology, 210, 473-478.
  • ZHOU, Y., ALBIJANIC, B., WANG, Y., YANG, J., 2018. Characterizing surface properties of oxidized coal using FTIR and contact angle measurements. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(12), 1559-1564.
  • ZHU, B., ZHAO, Z. (1999). Base of Interface Chemistry. Beijing: Chemistry Industry Press.
  • ZHU, X., HE, M., ZHANG, W., WEI, H., LYU, X., WANG, Q., YOU, X., LI, L., 2020. Formulation design of microemulsion collector based on gemini surfactant in coal flotation. Journal of Cleaner Production, 257, 120496.
  • ZHU, X., WEI, H., HOU, M., WANG, Q., YOU, X., LI, L., 2020. Thermodynamic behavior and flotation kinetics of an ionic liquid microemulsion collector for coal flotation. Fuel, 262, 116627.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f80e279-49c3-4db9-9d9f-318182c1f09c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.