Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, we investigated the effect of the hydrophilic ethylene oxide chain lengths (i.e., degree of polymerization) of nonylphenol polyoxyethylene ether (NPEO-x, x = 8, 10, and 12) on the dewatering of low-rank coal slime through dewatering and adsorption experiments and X-ray photoelectron spectroscopy (XPS) measurements. The dewatering experiments showed that the adsorption of NPEO changed the water content of the low-rank coal slime: NPEO-8 achieved the best effect, followed, in decreasing order, by NPEO-10 and NPEO-12. Adsorption experiments revealed that the adsorption isotherms of NPEO-x on the low-rank coal surface conform with the Langmuir model, and its adsorption kinetics follow the pseudo-second-order kinetic equation. Furthermore, the adsorption is a spontaneous process and controlled by both intraparticle diffusion and liquid film diffusion. The XPS results showed that the adsorption of NPEO-x decreased the content of oxygencontaining groups and, thus, improved the hydrophobicity of the low-rank coal surface. Further, the use of NPEO-x with a low degree of polymerization (x = 8) improves the hydrophobicity of the coal surface and decreases the water content of low-rank coal slime.
Słowa kluczowe
Rocznik
Tom
Strony
723--736
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
autor
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
- National Engineering Laboratory for Coalmine Backfilling Mining, Shandong University of Science and Technology, Tai’an, Shandong 271019, China
autor
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
Bibliografia
- AHAMAD, K. U., SINGH, R., BARUAH, I., CHOUDHURY, H., SHARMA, M. R., 2018. Equilibrium and kinetics modeling of fluoride adsorption onto activated alumina, alum and brick powder. Groundwater for Sustainable Development, 7, 452-458.
- AHMET, G., SAMIH, B., KEMAL, D., M. SAHIN, G., 1995. Adsorption of CTAB at lignite-aqueous solution interface. Fuel Processing Technology, 45(2), 75-84.
- BERGINS, C., HULSTON, J., STRAUSS, K., CHAFFEE, A. L., 2007. Mechanical/thermal dewatering of lignite. Part 3: Physical properties and pore structure of MTE product coals. Fuel, 86(1-2), 3-16.
- CACERES-JENSEN, L., RODRIGUEZ-BECERRA, J., PARRA-RIVERO, J., ESCUDEY, M., BARRIENTOS, L., CASTRO-CASTILLO, V., 2013. Sorption kinetics of diuron on volcanic ash derived soils. J Hazard Mater, 261, 602-613.
- CHENG, J. Y., WANG, P., MA, J. P., LIU, Q. K., DONG, Y. B., 2014. A nanoporous Ag(I)-MOF showing unique selective adsorption of benzene among its organic analogues. Chem Commun (Camb), 50(89), 13672-13675.
- DEMIRBAS, A., SARI, A., ISILDAK, O., 2006. Adsorption thermodynamics of stearic acid onto bentonite. J Hazard Mater, 135(1-3), 226-231.
- GROPPO, J. G., PAREKH, B. K., 1996. Pilot-Scale Evaluation of Hyperbaric Filtration of Ultra Fine Clean Coal. Coal Preparation, 17(1-2), 61-70.
- HAMEED, B. H., EL-KHAIARY, M. I., 2008a. Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K(2)CO(3) activation and subsequent gasification with CO(2). J Hazard Mater, 157(2-3), 344-351.
- HAMEED, B. H., EL-KHAIARY, M. I., 2008b. Kinetics and equilibrium studies of malachite green adsorption on rice strawderived char. J Hazard Mater, 153(1-2), 701-708.
- HAMEED, B. H., SALMAN, J. M., AHMAD, A. L., 2009. Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. J Hazard Mater, 163(1), 121-126.
- HAO, S. X., LIU, X. Y., YU, Z. X., 2013. Effect of Deashing Treatment on the Coal Structure and Surface Groups. Advanced Materials Research, 803, 330-333.
- HULSTON, J., FAVAS, G., CHAFFEE, A. L., 2005. Physico-chemical properties of Loy Yang lignite dewatered by mechanical thermal expression. Fuel, 84(14-15), 1940-1948.
- LE ROUX, M., CAMPBELL, Q. P., WATERMEYER, M. S., DE OLIVEIRA, S., 2005. The optimization of an improved method of fine coal dewatering. Minerals Engineering, 18(9), 931-934.
- LIU, S., CHEN, M., CAO, X., LI, G., ZHANG, D., LI, M., MENG, N., YIN, J., YAN, B., 2020. Chromium (VI) removal from water using cetylpyridinium chloride (CPC)-modified montmorillonite. Separation and Purification Technology, 241, 116732.
- LIU, X., LIU, S., FAN, M., ZHANG, L., 2017. Decrease of hydrophilicity of lignite using CTAB: Effects of adsorption differences of surfactant onto mineral composition and functional groups. Fuel, 197, 474-481.
- LIU, Y., 2009. Is the Free Energy Change of Adsorption Correctly Calculated. Journal of Chemical & Engineering Data, 54(7), 1981-1985.
- LYU, X., YOU, X., HE, M., ZHANG, W., WEI, H., LI, L., HE, Q., 2018. Adsorption and molecular dynamics simulations of nonionic surfactant on the low rank coal surface. Fuel, 211, 529-534.
- ONAL, Y., AKMIL-BASAR, C., SARICI-OZDEMIR, C., 2007. Investigation kinetics mechanisms of adsorption malachite green onto activated carbon. J Hazard Mater, 146(1-2), 194-203.
- OYELUDE, E. O., AWUDZA, J. A. M., TWUMASI, S. K., 2017. Equilibrium, Kinetic and Thermodynamic Study of Removal of Eosin Yellow from Aqueous Solution Using Teak Leaf Litter Powder. Sci Rep, 7(1), 12198.
- PEDRO SILVA, J., SOUSA, S., RODRIGUES, J., ANTUNES, H., PORTER, J. J., GONçALVES, I., FERREIRA-DIAS, S., 2004. Adsorption of acid orange 7 dye in aqueous solutions by spent brewery grains. Separation and Purification Technology, 40(3), 309-315.
- SAHA, T. K., KARMAKER, S., ICHIKAWA, H., FUKUMORI, Y., 2005. Mechanisms and kinetics of trisodium 2-hydroxy-1,1'-azonaphthalene-3,4',6-trisulfonate adsorption onto chitosan. J Colloid Interface Sci, 286(2), 433-439.
- ŞAHIN, S., EMIK, S., 2018. Fast and highly efficient removal of 2,4-D using amino-functionalized poly (glycidyl methacrylate) adsorbent: Optimization, equilibrium, kinetic and thermodynamic studies. Journal of Molecular Liquids, 260, 195-202.
- SINGH, B. P., 1997. The influence of surface phenomena on the dewatering of fine clean coal. Filtration & Separation, 34(2), 159-163.
- SINGH, B. P., 1999. The role of surfactant adsorption in the improved dewatering of fine coal. Fuel, 78(4), 501-506.
- SINGH, B. P., BESRA, L., REDDY, P. S. R., SANGUPTA, D. K., 1998. Use of surfactants to aid the dewatering of fine clean coal. Fuel, 77(12), 1349-1356.
- SIS, H., CHANDER, S., 2003. Adsorption and contact angle of single and binary mixtures of surfactants on apatite. Minerals Engineering, 16(9), 839-848.
- STROH, G., STAHL, W., 1990. Effect of surfactants on the filtration properties of fine particles. Filtration & Separation, 27(3), 0-199.
- SUN, X. F., WANG, S. G., LIU, X. W., GONG, W. X., BAO, N., GAO, B. Y., ZHANG, H. Y., 2008. Biosorption of Malachite Green from aqueous solutions onto aerobic granules: kinetic and equilibrium studies. Bioresour Technol, 99(9), 3475-3483.
- TAFFAREL, S. R., RUBIO, J., 2009. On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites. Minerals Engineering, 22(4), 336-343.
- TAO, D., GROPPO, J. G., PAREKH, B. K., 2000. Enhanced ultrafine coal dewatering using flocculation filtration processes. Minerals Engineering, 13(2), 163-171.
- VADIVELAN, V., KUMAR, K. V., 2005. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interface Sci, 286(1), 90-100.
- VAZIRI HASSAS, B., KARAKAŞ, F., ÇELIK, M. S., 2014. Ultrafine coal dewatering: Relationship between hydrophilic lipophilic balance (HLB) of surfactants and coal rank. International Journal of Mineral Processing, 133, 97-104.
- VOGT, C., WILD, T., BERGINS, C., STRAUß, K., HULSTON, J., CHAFFEE, A. L., 2012. Mechanical/thermal dewatering of lignite. Part 4: Physico-chemical properties and pore structure during an acid treatment within the MTE process. Fuel, 93, 433-442.
- XIAO, F., YAN, B.-Q., ZOU, X.-Y., CAO, X.-Q., DONG, L., LYU, X.-J., LI, L., QIU, J., CHEN, P., HU, S.-G., ZHANG, Q.-J., 2020. Study on ionic liquid modified montmorillonite and molecular dynamics simulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 587, 124311.
- XU, Y., LIU, Y.-L., HE, D.-D., LIU, G.-S., 2013. Adsorption of cationic collectors and water on muscovite (001) surface: A molecular dynamics simulation study. Minerals Engineering, 53, 101-107.
- YOON, R.-H., ASMATULU, R., ISMAIL YILDIRIM, JANSEN, W., ZHANG, J., ATKINSON, B., HAVENS, J. (2004). Development of Dewatering Aids for Minerals And Coal Fines. Retrieved from United States:
- YOU, X., HE, M., CAO, X., WANG, P., WANG, J., LI, L., 2019. Molecular dynamics simulations of removal of nonylphenol pollutants by graphene oxide: Experimental study and modelling. Applied Surface Science, 475, 621-626.
- YOU, X., HE, M., ZHANG, W., WEI, H., LYU, X., HE, Q., LI, L., 2018. Molecular dynamics simulations of nonylphenol ethoxylate on the Hatcher model of subbituminous coal surface. Powder Technology, 332, 323-330.
- YOU, X., HE, M., ZHU, X., WEI, H., CAO, X., WANG, P., LI, L., 2019. Influence of surfactant for improving dewatering of brown coal: A comparative experimental and MD simulation study. Separation and Purification Technology, 210, 473-478.
- ZHOU, Y., ALBIJANIC, B., WANG, Y., YANG, J., 2018. Characterizing surface properties of oxidized coal using FTIR and contact angle measurements. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(12), 1559-1564.
- ZHU, B., ZHAO, Z. (1999). Base of Interface Chemistry. Beijing: Chemistry Industry Press.
- ZHU, X., HE, M., ZHANG, W., WEI, H., LYU, X., WANG, Q., YOU, X., LI, L., 2020. Formulation design of microemulsion collector based on gemini surfactant in coal flotation. Journal of Cleaner Production, 257, 120496.
- ZHU, X., WEI, H., HOU, M., WANG, Q., YOU, X., LI, L., 2020. Thermodynamic behavior and flotation kinetics of an ionic liquid microemulsion collector for coal flotation. Fuel, 262, 116627.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f80e279-49c3-4db9-9d9f-318182c1f09c