PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chromium Resistant Bacteria : Impact on Plant Growth in Soil Microcosm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three chromium resistant bacterial strains, Pseudomonas fl uorescens PF28, Enterobacter amnigenus EA31 and Enterococcus gallinarum S34 isolated from tannery waste contaminated soil were used in this study. All strains could resist a high concentration of K2Cr2O7 that is up to 300 mg/L. The effect of these strains on clover plants (Trifolium campestre) in the presence of two chromium salts CrCl3 and K2Cr2O7 was studied in soil microcosm. Application of chromium salts adversely affected seed germination, root and shoot length. Bacterial inoculation improved the growth parameters under chromate stress when compared with non inoculated respective controls. There was observed more than 50% reduction of Cr(VI) in inoculated soil microcosms, as compared to the uninoculated soil under the same conditions. The results obtained in this study are signifi cant for the bioremediation of chromate pollution.
Rocznik
Strony
81--89
Opis fizyczny
Bibliogr. 26 poz., tab., wykr.
Twórcy
autor
  • Microbial Biotechnology Laboratory, Sidi Mohammed Ben Abdellah University, Faculty of Sciences and Techniques, Route Immouzer, P.O. Box 2202, Fez, Morocco
autor
  • Microbial Biotechnology Laboratory, Sidi Mohammed Ben Abdellah University, Faculty of Sciences and Techniques, Route Immouzer, P.O. Box 2202, Fez, Morocco
  • Microbial Biotechnology Laboratory, Sidi Mohammed Ben Abdellah University, Faculty of Sciences and Techniques, Route Immouzer, P.O. Box 2202, Fez, Morocco
Bibliografia
  • [1] Valko M., Morris H. & Cronin M.T.D. (2005). Metals, toxicity and oxidative stress, Current Medicinal Chemitry, 12, 1161-1208.
  • [2] Proctor D.M., Otani J.M., Finley B.L., Paustenbach D.J., Bland J.A., Speizer N. & Sargent E.V. (2002). Is hexavalent chromium carcinogenic via ingestion? A weight-of-evidence review, Journal of Toxicology and Environmental Health Part A, 65, 701-746.
  • [3] Amezcua-Allieri M.A., Lead R.J. & Rodriguez-Vazquez R. (2005). Changes of chromium behavior in soil during phenanthrene removal by Penicillium frequentans, BioMetals, 18, 23-29.
  • [4] Davies F.T., Puryear J.D., Newton R.J., Egilla J.N. & Grossi J.A.S. (2002). Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. Journal of Plant Nutrition, 25, 2389-2407.
  • [5] Mei B., Puryear J.D. & Newton R.J. (2002). Assessment of Cr tolerance and accumulation in selected plant species, Plant and Soil, 247, 223-231.
  • [6] Shanker A.K. (2003). Physiological, biochemical and molecular aspects of chromium toxicity and tolerance in selected crops and tree species. PhD Thesis, Tamil Nadu Agricultural University, Coimbatore, India 2003.
  • [7] Cheung K.H. & Gu J.D. (2005). Chromate reduction by Bacillus megaterium TKW3 isolated from marine sediments, World Journal of Microbiology and Biotechnology, 21, 213-219.
  • [8] Pei Q.H., Shahir S., Santhana Raj A.S. (2009). Chromium(VI) resistance and removal by Acinetobacter haemolyticus. World Journal of Microbiology Biotechnology, 25,1085-1093.
  • [9] Sau G.B., Chatterjee S., Sinha S. & Mukherjee S.K. (2008). Isolation and characterization of a Cr(VI) reducing Bacillus firmus strain from industrial effluents. Polish Journal of Microbiology, 57, 327-332.
  • [10] Rajkumar M. & Nagendran R. (2005). Characterization of a novel Cr6+ reducing Pseudomonas sp. with plant growth-promoting potential. Current Microbiology, 50, 266-271.
  • [11] Faisal M. & Hasnain S. (2006). Plant growth by Brevibacterium under chromium stress, Research Journal of Botany, 1, 24-29.
  • [12] Chatterjee S., Ballav Sau G. & Mukherjee S.K. (2009). Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World Journal of Microbiology Biotechnology, 25, 1829-1836.
  • [13] Jing Y.D., He Z.L. & Yang X.E. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils, Journal of Zhejiang University Science B, 8,192-207.
  • [14] Zhuang X.L. & Chen J. (2007). New advances in plant growth promoting rhizobacteria for bioremediation. Environment International, 33, 406-413.
  • [15] Sayel H., Bahafid W., Joutey T.N., Derraz K., Benbrahim K.F., Koraichi S.I. Ghachtouli N.E. (2012). Cr(VI) reduction by Enterococus gallinarum isolated from tannery waste-contaminated soil, Annals of Microbiology, 62, 1269-1277.
  • [16] Dereeper A., Guignon V., Blac G., Audic S., Buffet S., Chevenet F., Dufayard J.F., Guindon S., Lefort V. & Lescot M. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. Jul 1; 36 (Web Server issue): W465-9. Epub 2008 Apr 19. (PubMed)
  • [17] Centre d'expertise en analyse environnementale du québec: Détermination du chrome hexavalent: méthode colorimétrique, MA. 200 - CrHex 1.1. Ministère du Développement durable, de l'Environnement et des Parcs du Québec, 10 p. (2008).
  • [18] Pattanapipitpaisal P., Brown N.L. & Macaskie L.E. (2001). Chromate reduction and 16S rRNA identification of bacteria isolated from Cr(VI) contaminated site, Applied Microbiology and Biotechnology, 57, 257-261.
  • [19] Steel R.G.D. & Torrie J.H. (1981). Principles and procedures of statistics, a biometrical approach, 2nd ed. McGraw Hill, New York 1981.
  • [20] Megharaj M., Avudainayagam S. & Naidu R. (2003). Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste, Current Microbiology, 47, 51-54.
  • [21] Michel C., Brugna M., Aubert C., Bernadac A. & Bruschi M. (2001). Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Key role of polyheme cytochrome c and hydro-genases, Appllied Microbiology and Biotechnology, 55, 95-100.
  • [22] Hu X.W., Guo L.Y., Ming Z.G., Xin L., Xiao S.H. & Ging P.Q. (2009). Characterization of Cr(VI) resistance and reduction by Pseudomonas aeruginosa, Transactions of Nonferrous Metals society of China, 19, 1336-1341.
  • [23] Faisal M., Hasnain S. (2005). Chromate resistant Bacillus cereus augments sunflower growth by reducing toxicity of Cr (VI), Journal of Plant Biology, 48, 2, 187-194.
  • [24] Riaz S., Faisal M. & Hasnain S. (2010). Cicer arietinum growth promotion by Ochrobactrum intermedium and Bacillus cereus in the presence of CrCl3 and K2CrO4, Annals of Microbiology, 60, 729-733.
  • [25] Srivastava S., Ahmad A.H. & Thakur I.S. (2007). Removal of chromium and pentachlorophenol from tannery effluents, Bioresource Technology, 98, 1128-1132.
  • [26] Faisal M. & Hasnain S. (2005). Colonization of Vigna radiate roots by chromium resistant bacterial strains Ochrobactrum intermedium, Bacillus cereus and Brevibacterium sp, Chinese Journal of Applied and Environmental Biology, 11, 5, 528-530.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f7f706f-9dd2-4f1b-81d2-995d158812d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.