PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the number of turns on the performance of permanent magnet synchronous motor

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current passed by the stator coil of the permanent magnet synchronous motor (PMSM) provides rotating magnetic field, and the number of turns will directly affect the performance of PMSM. In order to analyze its influence on the PMSM performance, a 3 kW, 1500 r/min PMSM is taken as an example, and the 2D transient electromagnetic field model is established. The correctness of the model is verified by comparing the experimental data and calculated data. Firstly, the finite element method (FEM) is used to calculate the electromagnetic field of the PMSM. The performance parameters of the PMSM are obtained. On this basis, the influence of the number of turns on PMSM performance is quantitatively analyzed, including current, no-load back electromotive force (EMF), overload capacity and torque. In addition, the influence of the number of turns on eddy current loss is further studied, and its variation rule is obtained, and the variation mechanism of eddy current loss is revealed. Finally, the temperature field of the PMSM is analyzed by the coupling method of electromagnetic field and temperature field, and the temperature rise law of PMSM is obtained. The analysis of this paper provides reference and practical value for the optimization design of PMSM.
Rocznik
Strony
429--436
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
autor
  • School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
autor
  • School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
autor
  • School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
Bibliografia
  • [1] K. Urbanski, “A new sensorless speed control structure for PMSM using reference model”, Bull. Pol. Ac.: Tech. 65(4), 489‒496 (2017).
  • [2] T. Tarczewski, “High-performance PMSM servo-drive with constrained state feedback position controller”, Bull. Pol. Ac.: Tech. 66(1), 49–58 (2018).
  • [3] K. Urbanski, “Unscented and extended Kalman filters study for sensorless control of PM synchronous motors with load torque estimation”, Bull. Pol. Ac.: Tech. 61(4), 489‒496 (2013).
  • [4] Chiba, M. Takeno, N. Hoshi, M. Takemoto, S. Ogasawara, and M.A. Rahman, “Consideration of Number of Series Turns in Switched-Reluctance Traction Motor Competitive to HEV IPMSM,” IEEE Trans. Ind. Appl. 481(6), 2333‒2340 (2012).
  • [5] S.M. Al-Habshi, M.L. M. Jamil, M.N. Othman, A. Jidin, K.A. Karim, and Z.Z. Zolkapli, “Influence of number of turns per coil in fractional-slot PM brushless machines,” 2014 IEEE Conference on Energy Conversion (CENCON), Johor Bahru, 2014, pp. 146‒151.
  • [6] J. Corda, “Search for optimum number of turns of switched reluctance motor,” V IEEE International Power Electronics Congress Technical Proceedings, CIEP 96, Cuernavaca, 1996, pp. 241‒245.
  • [7] C.X. Yang and Y. Zhang, “Influence of Output Voltage Harmonic of Inverter on Loss and Temperature Field of Permanent Magnet Synchronous Motor.” IEEE Trans. Magn. 55(6), 82016056,(2019).
  • [8] A. Łebkowski, “Design, Analysis of the Location and Materials of Neodymium Magnets on the Torque and Power of In-Wheel External Rotor PMSM for Electric Vehicles”, Energies 11(9), 1‒23 (2018).
  • [9] H. Zhan, Z.Q. Zhu, and M. Odavic, “Nonparametric Sensorless Drive Method for Open-Winding PMSM Based on Zero-Sequence Back EMF With Circulating Current Suppression,” IEEE Trans. Power Electron. 32(5), 3808‒3817 (2017).
  • [10] X. Sun, “Design and analysis of interior composite-rotor bearingless permanent magnet synchronous motors with two layer permanent magnets”, Bull. Pol. Ac.: Tech. 65(6), 833‒843 (2017).
  • [11] V.S. Nagarajan, “Geometrical sensitivity analysis based on design optimization and multiphysics analysis of PM assisted synchronous reluctance motor”, Bull. Pol. Ac.: Tech. 67(1), 49–58 (2019).
  • [12] B.K. Su, X. Sun, and L. Chen, “Thermal modeling and analysis of bearingless permanent magnet synchronous motors,” Int. J. Appl. Electromagn. Mech. 56(1), 115‒130 (2018).
  • [13] H.B. Qiu, W.F. Yu, and B.X. Tang, “Research on the Influence of Inter-turn Short Circuit Fault on the Temperature Field of Permanent Magnet Synchronous Motor,” J. Electr. Eng. Technol. 12(4), 1566‒1574 (2017).
  • [14] S. Chaithongsuk, N. Takorabet, and S. Kreuawan, “Reduction of Eddy-Current Losses in Fractional-Slot Concentrated-Winding Synchronous PM Motors,” IEEE Trans. Magn. 51(3), 1‒4 (2015).
  • [15] J. Han, W. Li, L. Wang, X. Zhou, X. Zhang, and Y. Li, “Calculation and Analysis of the Surface Heat-Transfer Coefficient and Temperature Fields on the Three-Dimensional Complex End Windings of a Large Turbogenerator,” IEEE Trans. Ind. Electron. 61(10), 5222‒5231 (2014).
  • [16] Y. Xia, Y. Xu, M. Ai, and J. Liu, “Temperature Calculation of an Induction Motor in the Starting Process,” IEEE Trans. Appl. Supercond. 29(2), 1‒4 (2019).
  • [17] J.X. Li, C.M. Zhang, and L.L. Li. “Calculation and Experimental Study on Temperature Rise of a High OverLoad Tubular Permanent Magnet Linear Motor”, IEEE Trans. Plasma Sci. 41(5),1182‒1187 (2013).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f7e032e-2394-4c33-b088-7c7e40872b85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.