PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical modeling and engineering design of multi-level inverter based on selective harmonic elimination

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Modelowanie matematyczne i projektowanie inżynierskie wielopoziomowego falownika w oparciu o selektywną eliminację harmonicznych
Języki publikacji
EN
Abstrakty
EN
SHE is a well-studied alternative to common PWM methods. This work shows how to use a Newton Raphson method to selectively reduce higher or lower order harmonics while preserving the needed fundamental voltage in asymmetrical multilevel inverter. This strategy can be used with any number of levels in asymmetrical multilevel inverter. For example, a 9-level and 27-level asymmetrical multilevel inverter is analyzed in this research, and the optimal angles are determined to eliminate the 3rd, 5th and 7th harmonics for nine level inverter and to eliminate twelve odd harmonic from 3rd harmonic to 25th harmonic for twenty seven level inverter.
PL
SHE jest dobrze zbadaną alternatywą dla popularnych metod PWM. Ta praca pokazuje, jak wykorzystać metodę Newtona Raphsona do selektywnej redukcji wyższych lub niższych harmonicznych przy jednoczesnym zachowaniu wymaganego napięcia podstawowego w asymetrycznym falowniku wielopoziomowym. Ta strategia może być stosowana z dowolną liczbą poziomów w asymetrycznym falowniku wielopoziomowym. Na przykład w tych badaniach analizowany jest 9-poziomowy i 27-poziomowy asymetryczny wielopoziomowy falownik, a optymalne kąty są określane w celu wyeliminowania 3, 5 i 7 harmonicznej dla 9-poziomowego falownika oraz wyeliminowania 12 nieparzystych harmonicznych od 3 do 25 harmonicznej. harmonicznych dla dwudziestu siedmiu poziomów falownika.
Rocznik
Strony
83--86
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Bibliografia
  • [1] J. Rodriguez, J.S. Lai, F.Z. Peng, "Multilevel inverters: a survey of topologies, control and applications", IEEE Transaction on Power Electronics, vol. 49, no. 4, pp. 724-738, August 2002.
  • [2] G. Baoming, F.Z. Peng, A.T. de Almeida, H. Abu-Rub, "An Effective Control Technique for Medium-Voltage High-Power Induction Motor Fed by Cascaded Neutral-Point-Clamped Inverter", IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2659-2668, August 2010.
  • [3] H. Kojima, K. Matsui, K. Tsuboi, "Static Var compensator having active filter function for lower order harmonics", IEEE Conference on Industrial Electronics Society, IECON’04, vol. 2,pp. 1133-1138, November 2004.
  • [4] Saad, Hadeel & Al-Badrani, Harith & Younis, Ahmad. (2021). Design and simulation of cascaded H-bridge 5-level inverter forgrid connection system based on multi-carrier PWM technique. IOP Conference Series: Materials Science and Engineering. 1152. 012034. 10.1088/1757-899X/1152/1/012034.
  • [5] J. Rodriguez, S. Bernet, P.K. Steimer, I.E. Lizama, "A Survey on Neutral-Point-Clamped Inverters", IEEE Transactions on Industrial Electronics, vol. 57, no. 7, pp. 2219-2230, July 2010.
  • [6] J. Huang, K.A. Corzine, "Extended operation of flying capacitor multilevel inverters", IEEE Transactions on Power Electronics, vol. 21, no. 1, pp. 140-147, January 2006.
  • [7] E. Babaei, "A cascade Multilevel Converter Topology With Reduced Number of Switches", IEEE Transactions on Power Electronics, vol. 23, no. 6, pp. 2657-2664, November 2008.
  • [8] S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L.G. Franquelo, B. Wu, J. Rodriguez, M.A. Pérez, J.I. Leon, "Recent Advances and Industrial Applications of Multilevel Converters",IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2553-2580, August 2010.
  • [9] L.M. Tolbert, F.Z. Peng, T.G. Habetler, "Multilevel converters for large electric drives", IEEE Transactions on Industry Applications, vol. 35, no. 1, pp. 36-44, January-February 1999.
  • [10] J. Rodriguez, L.G. Franquelo, S. Kouro, J.I. Leon, R.C. Portillo, M.M. Prats, M.A. Pérez, "Multilevel Converters: An Enabling Technology for High-Power Applications", Proceedings of the IEEE, vol. 97, no. 11, pp. 1786-1817, November 2009.
  • [11] J. Song-Manguelle, S. Mariethoz, M. Veenstra, A. Rufer, "AGeneralized Design Principle of a Uniform Step Asymmetrical Multilevel Converter for High Power Conversion", European Conference on Power Electronics and Applications, EPE’01, Graz, Austria, August 2001.
  • [12] M.S.A. Dahidah, V.G. Agelidis, "Selective Harmonic Elimination PWM Control for Cascaded Multilevel Voltage Source Converters: A Generalized Formula", IEEE Transaction on Power Electronics, vol. 23, no. 4, pp. 1620- 1630, July 2008.
  • [13] A. Hiendro, "Multiple Switching Patterns for SHEPWM Inverters Using Differential Evolution Algorithms", International Journal of Power Electronics and Drive System (IJPEDS), vol. 1, no. 2, pp. 94-103, December 2011.
  • [14] H. Al-Badrani, S. Feuersaenger and M. Pacas, "VSI with Sinusoidal Voltages for an Enhanced Sensorless Control of the Induction Machine," PCIM Europe 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2018, pp. 1-7.
  • [15] T. Cunnyngham, "Cascade multilevel inverters for large hybrid-electric vehicle applications with variant dc sources", Master thesis, University of Tennessee, Knoxville, 2001.
  • [16] J. Kumar, B. Das, P. Agarwal, "Selective Harmonic Elimination Technique for a Multilevel Inverter", Fifteenth National Power Systems Conference, NPSC’08, IIT Bombay, pp. 608-613, December 2008.
  • [17] R. Taleb, A. Derrouazin, "USAMI Control with a Higher Order Harmonics Elimination Strategy based on the Resultant Theory", Energy Procedia, Elsevier Ltd, vol. 50, pp. 1045-1055,2014.
  • [18] V. Jegathesan, "Genetic algorithm based solution in PWM converter switching for voltage source inverter feeding an induction motor drive", AJSTD, vol. 26, no. 2, pp. 45-60, 2010.
  • [19] N. Tutkun, "Improved power quality in a single-phase PWM inverter voltage with bipolar notches through the hybrid genetic algorithms", Expert Systems with Applications, Elsevier Ltd, vol. 37, no. 8, pp. 5614-5620, August 2010.
  • [20] A.R. Firdaus, A.S. Rahman, "Genetic Algorithm of Sliding Mode Control Design for Manipulator Robot", Telkomnika, vol. 10, no. 4, pp. 645-654, December 2012.
  • [21] F. Tahami, H. Nademi, M. Rezaei, "Maximum Torque per Ampere Control of Permanent Magnet Synchronous Motor Using Genetic Algorithm", Telkomnika, vol. 9, no. 2, pp. 237-244, August 2011.
  • [22] F. Khoucha, et al., “A Comparison of Symmetrical and Asymmetrical Three-Phase H-Bridge Multilevel Inverter for DTC Induction Motor Drives,” IEEE Transactions on Energy Conversion, vol/issue: 26(1), pp. 64-72, 2011.s
  • [23] A. Nami, et al., “Comparison Between Symmetrical and Asymmetrical Single Phase Multilevel Inverter with Diode-Clamped Topology,” IEEE Power Electronics Specialist Conference, vol. 15, pp. 2921-2925, 2008.
  • [24] E. Kabalci, et al., “Modelling a 7-level Asymmetrical H-bridge Multilevel Inverter with PS-SPWM Control,” Acemp-Electromotion 2011, pp. 578-583, 2011.
  • [25] J. Rodriguez, et al., “Multilevel Voltage-Source-ConverterTopologies for Industrial Medium-Voltage Drives,” IEEE Transactions on Industrial Electronics, vol. 54, pp. 2930-2944, 2007.
  • [26] P. Avirajamanjula, P. Palanivel, "Corroboration of Normalized Least Mean Square Based Adaptive Selective Current Harmonic Elimination in Voltage Source Inverter using DSP Processor", International Journal of Power Electronics and Drive System (IJPEDS), vol. 6, no. 1, pp. 178-184, 2015.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f7dbf14-e503-4a16-8c81-2344d44a3090
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.