PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive feedback control system for reduction of vibroacoustic emission

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Adaptacyjny system sterowania ze sprzężeniem zwrotnym dla redukcji transmisji wibroakustycznej
Języki publikacji
EN
Abstrakty
EN
The aim of the present study is to introduce the possibilities of modifying vibrations of a thin plate structure with arbitrary boundary conditions using the developed, original active feedback control system in such manner that the amplitude of the acoustic pressure field generated by the plate is minimized in a selected point of the ambient space. Theoretical investigations on the phenomena underlying the processes of detection and excitation of vibrations of thin plate structures using piezoelectric transducers are presented. An original algorithm for computation of the free-field acoustic radiation characteristics of vibrating plate structures with arbitrary boundary conditions has been developed and implemented. The algorithm provides a significant reduction of the required computational time and cost. Novel optimal control and adaptation algorithms for determining optimal feedback gain values, for which the amplitude of acoustic pressure is minimized in a given point of the ambient space surrounding the controlled structure, have also been developed. The active vibroacoustic control system used in experimental investigations has been designed and constructed in accordance with an original concept, with separated, independent analogue feedback paths. The results of experiments carried out in an anechoic chamber showed that under the assumed conditions it is possible to obtain significant levels of reduction of noise emitted by the controlled plate structure, excited to vibrate by an external force.
PL
Podstawowym celem niniejszej pracy jest przedstawienie możliwości detekcji i kontroli drgań cienkich konstrukcji płytowych o dowolnych warunkach mocowania za pomocą zaprojektowanego, oryginalnego aktywnego układu sterowania bazującego na sensorach i aktuatorach piezoelektrycznych, w celu minimalizacji amplitudy ciśnienia akustycznego w wybranym punkcie przestrzeni otaczającej strukturę. Przedstawiony został opis teoretyczny rozpatrywanych zjawisk leżących u podstaw procesów detekcji i wzbudzania drgań struktur płytowych za pomocą przetworników piezoelektrycznych. Opracowano i zaimplementowano oryginalny algorytm wyznaczania rozkładu pola ciśnienia akustycznego w otoczeniu płyty drgającej w wolnej przestrzeni, umożliwiający minimalizację czasu i kosztu niezbędnych obliczeń numerycznych. Opracowane zostały także oryginalne algorytmy sterowania optymalnego i adaptacji, umożliwiające szybkie i efektywne wyznaczanie optymalnych wartości wzmocnień pętli sprzężeń zwrotnych układu sterowania, dla których następuje minimalizacja amplitudy ciśnienia akustycznego w wybranym punkcie przestrzeni otaczającej kontrolowaną strukturę płytową. System sterowania aktywnego wykorzystany do badań doświadczałnych został zaprojektowany i skonstruowany według oryginalnej koncepcji z wydzieleniem niezależnych, analogowych torów sprzężeń zwrotnych. Wyniki eksperymentów przeprowadzonych w komorze bezechowej wykazały, iż w badanym układzie możliwe jest znaczne zredukowanie poziomu hałasu emitowanego przez kontrolowaną konstrukcję płytową pobudzoną do drgań przez siłę zewnętrzną.
Słowa kluczowe
Rocznik
Tom
Strony
1--154
Opis fizyczny
Bibliogr. 103 poz., rys., tab.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences
Bibliografia
  • 1. Paul Lueg. Process of silencing sound oscillations, 1936.
  • 2. Kambiz Vafai. Handbook of Porous Media. Crc Press, 2009.
  • 3. Jean Allard and Noureddine Atalla. Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials. Wiley, 2009.
  • 4. Frederick Alton Everest, Ken C. Pohlmann, and Tab Books. The Master Handbook of Acoustics. McGraw-Hill, New York, 2001.
  • 5. M. Bulent Ozer and Thomas J. Royston. Passively minimizing structural sound radiation using shunted piezoelectric materials. Journal of the Acoustical Society of America, 114(4):1934-1946, 2003.
  • 6. Tomasz Szolc and Łukasz Jankowski. Semi-active control of torsional vibrations of drive systems by means of actuators with the magneto-rheological fluid. In Proc. of 8th International Conference on Vibrations in Rotating Machines-SIRM 2009, 2009.
  • 7. Tomasz Szolc, Łukasz Jankowski, Andrzej Pochanke, and Agnieszka Magdziak. An application of the magneto-rheological actuators to torsional vibration control of the rotating electro-mechanical systems. In Proc. of the 8th IFToMM Int. Conference on Rotordynamics, pages 12-15, 2010.
  • 8. Agnieszka Pręgowska, Robert Konowrocki, and Tomasz Szolc. On the semi-active control method for torsional vibrations in electro-mechanical systems by means of rotary actuators with a magneto-rheological fluid. Journal of Theoretical and Applied Mechanics, 51(4):979-992, 2013.
  • 9. S. Faruque Ali, Ananth Ramaswamy, et al. Testing and modeling of mr damper and its application to SDOF systems using integral backstep-ping technique. Journal of Dynamic Systems, Measurement, and Control, 131(2):21009, 2009.
  • 10. A. S. Knyazev and B. D. Tartakovskii. Abatement of radiation from flex-urally vibrating plates by means of active local vibration dampers. Soviet Physics-Acoustics, 13:115-117, 1967.
  • 11. Chris R. Fuller, S. J. Elliot, and P. A. Nelson. Active Control of Vibration. Academic Press, London, 1996.
  • 12. Istan L. Ver and Leo L. Beranek. Noise & vibration control engineering: Principles & applications. John Wiley & Sons, 2005.
  • 13. Daniel J. Inman. Engineering Vibration. Prentice-Hall, 1996.
  • 14. Colin N. Hansen. Understanding active noise cancellation. Taylor & Francis, 2002.
  • 15. Harry F. Olson and Everett G. May. Electronic sound absorber. Journal of the Acoustical Society of America, 25(6):1130-1136, 1953.
  • 16. Harry F. Olson. Electronic control of noise, vibration, and reverberation. Journal of the Acoustical Society of America, 28(5):966-972, 1956.
  • 17. P. A. Nelson and S. J. Elliott. Active Control of Sound. Academic Press, 1993.
  • 18. Sen M. Kuo and Dennis R. Morgan. Active noise control: a tutorial review. Proceedings of the IEEE, 87(6):943-973, 1999.
  • 19. Glenn E. Warnaka. Active attenuation of noise-the state of the art. Noise Control Engineering Journal, 18:100-110, 1982.
  • 20. Chris R. Fuller. Experiments on reduction of aircraft interior noise using active control of fuselage vibration. Journal of the Acoustical Society of America, 75:S88, 1985.
  • 21. Chris R. Fuller. Apparatus and method for global noise reduction, 1987.
  • 22. Chris R. Fuller and R. J. Silcox. Acoustics 1991: Active structural acoustic control. Journal of the Acoustical Society of America, 91:519, 1992.
  • 23. C. H. Hansen and S. D. Snyder. Effect of geometric and structural/acoustic variables on the active control of sound radiation from a vibrating surface. Recent Advances in Active Control of Sound and Vibration, 1:487-505, 1991.
  • 24. E. Unver Thi and M. Zuniga. Comparison of design approaches in sound radiation suppression. Proceedings of Recent Advances in Active Control of Sound and Vibration, 1:15-17, 1991.
  • 25. D. R. Thomas, P. A. Nelson, and S. J. Elliott. Experiments on the active control of the transmission of sound through a clamped rectangular plate. Journal of Sound and Vibration, 139(2):351-355, 1990.
  • 26. William T. Baumann, William R. Saunders, and Harry H. Robertshaw. Active suppression of acoustic radiation from impulsively excited structures. Journal of the Acoustical Society of America, 90(6):3202-3208, 1991.
  • 27. Tomasz G. Zielinski. Multiphysics modeling and experimental validation of the active reduction of structure-borne noise. Journal of Vibration and Acoustics, 132(6):Art.No. 061008, 1-14, 2010.
  • 28. Jie Pan, Scott D. Snyder, Colin H. Hansen, and Christopher R. Fuller. Active control of farfield sound radiated by a rectangular panel - a general analysis. Journal of the Acoustical Society of America, 91(4):2056-2066, 1992.
  • 29. S. J. Elliott and M. E. Johnson. Radiation modes and the active control of sound power. Journal of the Acoustical Society of America, 94(4):2194-2204, 1993.
  • 30. L. Meirovitch and S. Thangjitham. Active control of sound radiation pressure. Journal of Vibration and Acoustics, 112:237-244, 1990.
  • 31. Alain Berry, Jean-Louis Guyader, and Jean Nicolas. A general formulation for the sound radiation from rectangular, baffled plates with arbitrary boundary conditions. Journal of the Acoustical Society of America, 88:2792, 1990.
  • 32. Lucyna Leniowska. Aktywne metody redukcji drgań płyt kołowych. Wydawnictwo Uniwersytetu Rzeszowskiego, 2006.
  • 33. Chris R. Fuller. Active control of sound transmission/radiation from elastic plates by vibration inputs: I. analysis. Journal of Sound and Vibration, 136:1-15, 1990.
  • 34. V. L. Metcalf, Chris R. Fuller, R. J. Silcox, and D. E. Brown. Active control of sound transmission/radiation from elastic plates by vibration inputs, ii: experiments. Journal of Sound and Vibration, 153(3):387-402, 1992.
  • 35. R. A. Burdisso and Chris R. Fuller. Theory of feedforward controlled system eigenproperties. Journal of Sound and Vibration, 153(3):437-451, 1992.
  • 36. Robert L. Clark. Adaptive feedforward modal space control. Journal of the Acoustical Society of America, 98:2639, 1995.
  • 37. C. Guigou and Chris R Fuller. Adaptive feedforward and feedback methods for active/passive sound radiation control using smart foam. Journal of the Acoustical Society of America, 104:226, 1998.
  • 38. Ricardo A. Burdisso and Chris R. Fuller. Design of feedforward asac sys-tems by eigenfunction assignment. Journal of the Acoustical Society of America, 94:1816, 1993.
  • 39. Jerzy Zabczyk. Mathematical control theory: an introduction. Springer, 2008.
  • 40. John Comstock Doyle, Bruce A. Francis, and Allen Tannenbaum. Feedback control theory. Macmillan Publishing Company New York, 1992.
  • 41. Robert L. Clark. A hybrid autonomous control approach. Journal of Dynamic Systems, Measurement, and Control, 117(2):232-240, 1995.
  • 42. W. R. Saunders, H. H. Robertshaw, and R. A. Burdisso. An evaluation of feedback, adaptive feedforward and hybrid controller designs for active structural control of a lightly-damped structure. In 2nd Conference on recent advances in active control of sound and vibration, Technomic Press, Blacksburg, VA, USA, 1993.
  • 43. Jeffrey S. Vipperman and Robert L. Clark. Hybrid model-insensitive control using a piezoelectric sensoriactuator. Journal of Intelligent Material Systems and Structures, 7(6):689-695, 1996.
  • 44. Brian Porter and Roger Crossley. Modal control: theory and applications. Taylor & Francis London, 1972.
  • 45. Mark J. Balas. Active control of flexible systems. Journal of Optimization Theory and Applications, 25(3):415-436, 1978.
  • 46. Jeffrey S. Vipperman. Adaptive piezoelectric sensoriactuators for active structural acoustic control. PhD thesis, Duke University, 1997.
  • 47. S. Yildirim. Vibration control of suspension systems using a proposed neural network. Journal of Sound and Vibration, 277(4):1059-1069, 2004.
  • 48. Lucyna Leniowska and Ryszard Leniowski. Active vibration control of a circular plate with clamped boundary condidtion. Molecular & Quantum Acoustics. Jour, 22:145-156, 2001.
  • 49. M. A. Ahmad, M. H. Suid, M. S. Ramli, M. A. Zawawi, and R. M. T. Raja Ismail. PD fuzzy logic with non-collocated PID approach for vibration control of flexible joint manipulator. In Signal Processing and Its Applications (CSPA), 2010 6th International Colloquium on, pages 1-5, 2010.
  • 50. Simon G. Hill, Nobuo Tanaka, and Hiroyuki Iwamoto. Local sens-ing/control or global error sensing/control in structural acoustics: A comparison of two techniques influence over sound power. Applied acoustics, 71:965-978, 2010.
  • 51. Kenneth D. Frampton. Vibro-acoustic control with a distributed sensor network. Journal of the Acoustical Society of America, 119(4):2170-2177, 2006.
  • 52. Arthur W. Leissa and Mahamad S. Qatu. Vibrations of Continious Sys-tems. Mc Graw Hill, 2011.
  • 53. Ignacy Malecki. Theory of Waves and Acoustic Systems. PWN, 1964. (in Polish).
  • 54. T. G. Zielinski, M. A. Galland, and M. N. Ichchou. Fully coupled finite-element modeling of active sandwich panels with poroelastic core. Journal of Vibration and Acoustics - Transactions of the ASME, 134(2):Art.No. 021007, 1-10, 2012.
  • 55. Thomas Christensen. The Cambridge History of Western Music Theory. Cambridge University Press, 2002.
  • 56. John William Strutt Rayleigh. The theory of sound. Macmillan and co., London, 1877.
  • 57. Miguel C. Junger and David Feit. Sound, Structures, and Their Interaction. The MIT Press, 1972.
  • 58. G. Maidanik and E. M. Kerwin. Influence of fluid loading on the radiation from infinite plates below the critical frequency. Journal of the Acoustical Society of America, 40(5):1034-1038, 1966.
  • 59. Alan D. Stuart. Acoustic radiation from submerged plates. i. influence of leaky wave poles. Journal of the Acoustical Society of America, 59(5):1160-1169, 1976.
  • 60. Alan D. Stuart. Acoustic radiation from submerged plates. ii. radiated power and damping. Journal of the Acoustical Society of America, 59(5):1170-1174, 1976.
  • 61. Lucyna Leniowska. Acoustic power of fluid-loaded circular plate located in finite baffle. Archives of Acoustics, 22(4):423-435, 1997.
  • 62. H. Nelisse, O. Beslin, and J. Nicolas. A generalized approach for the acoustic radiation from a baffled or unbaffled plate with arbitrary boundary conditions, immersed in a light or heavy fluid. Journal of Sound and Vibration, 211:207-225, 1998.
  • 63. Lukasz J. Nowak and Tomasz G. Zielinski. Acoustic radiation of vibrating plate structures submerged in water. Hydroacoustics, 15:163-170, 2012.
  • 64. Paweł Jabłoński. Metoda elementów brzegowych w analizie pola elektromagnetycznego. Wydawnictwo Politechniki Częstochowskiej, 2003.
  • 65. R. D. Ciskowski and C. A. Brebbia. Boundary Element Methods in Acoustics. Computational Mechanics Publications, 1991.
  • 66. Lothar Gaul, Martin Kógl, and Marcus Wagner. Boundary Element Meth-ods for Engineers and Scientists. Springer, 2003.
  • 67. Stephen Kirkup. The Boundary Element Method in Acoustics. Integrated Sound Software, 2007.
  • 68. Wim Desmet. Boundary element method in acoustics. In ISAAC 23 -course on numerical and applied acoustics, 2012.
  • 69. Ahlem Alia, Mhamed Souli, and Fouad Erchiqui. Variational boundary element acoustic modelling over mixed quadrilateral-triangular element meshes. Communications in numerical methods in engineering, 22:767-780, 2006.
  • 70. Z. Cheng, J. Fan, B. Wang, and W. Tang. Radiation efficiency of submerged rectangular plates. Applied Acoustics, 73:150-157, 2012.
  • 71. M. Amabili. Free vibrations of annular plates coupled with fluids. Journal of Sound and Vibration, 191:825-846, 1996.
  • 72. C. C. Liang, Y. S. Tai, and P. L. Li. Natural frequencies of annular plates having contact with fluid. Journal of Sound and Vibration, 228:1167-1181, 1999.
  • 73. V. H. Vu, M. Thomas, A. Lakis, and L. Marcouiller. Effect of added mass on submerged vibrated plates. In Proceedings of the 25th Seminar on machinery vibration, pages 40.1-40.15. Canadian Machinery Vibration Association, 2007.
  • 74. M. Caresta and N. Keississoglou. Active control of sound radiated by a submarine hull in axisymetric vibration using inertial actuators. Journal of Vibration and Acoustics, 134:011002-1-8, 2012.
  • 75. S. K. Shariati and S. M. Mogadas. Vibration analysis of submerged submarine pressure hull. Journal of Vibration and Acoustics, 133:011013-1-6, 2011.
  • 76. R. Salamon. Hydrolocation Systems [in Polish: Systemy Hydrolokacyjne]. Gdańskie Towarzystwo Naukowe, 2006.
  • 77. Weiping Wang and Noureddine Atalla. A numerical algorithm for double surface integrals over quadrilaterals with a 1/r singularity. Communications in Numerical Methods in Engineering, 11:885-890, 1997.
  • 78. C. K. Lee and F. C. Moon. Modal sensors/actuators. Journal of Applied Mechanics, 57:434-441, 1990.
  • 79. C. K. Lee. Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. part i: Governing equations and reciprocal relationships. Journal of the Acoustical Society of America, 87(3):1144-1158, 1990.
  • 80. Stephen J. Elliott, Paolo Gardonio, Thomas C. Sors, and Michael J. Brennan. Active vibroacoustic control with multiple local feedback loops. J. Acoust. Soc. Am., 11(2):908-915, 2002.
  • 81. E. H. Anderson and N. W. Hagood. Simultaneous piezoelectric sens-ing/actuation: Analysis and application to controlled structures. Journal of Sound and Vibration, 174(5):617-639, 1994.
  • 82. Jeffrey J. Dosch, Daniel J. Inman, and Ephrahim Garcia. A self-sensing piezoelectric actuator for collocated control. Journal of Intelligent Material Systems and Structures, 3:166-185, 1992.
  • 83. Jeffrey S. Vipperman and Robert L. Clark. Implementation of an adaptive piezoelectric sensoriactuator. Journal of the Acoustical Society of America, 34(10):2102-2109, 1996.
  • 84. Garnett E. Simmers, Jeffrey R. Hodgkins, David D. Mascarenas, Gyuhae Park, and Hoon Sohn. Improved piezoelectric self-sensing actuation. Journal of Intelligent Material Systems and Structures, 15(12):941-953, 2004.
  • 85. Sharon L. Padula and Rex K. Kincaid. Optimization strategies for sensor and actuator placement. Technical report, National Aeronautics and Space Administration, 1999.
  • 86. Mary I. Frecker. Recent advances in optimization of smart structures and actuators. Journal of Intelligent Material Systems and Structures, 14(4-5):207-216, 2003.
  • 87. Vivek Gupta, Manu Sharma, and Nagesh Thakur. Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: A technical review. Journal of Intelligent Material Systems and Structures, 21(12):1227-1243, 2010.
  • 88. Zhicheng Qiu, Xianmin Zhang, Hongxin Wu, and Honghua Zhang. Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate. Journal of Sound and Vibration, 301:521-543, 2007.
  • 89. Osama J. Aldraihem, Tarunraj Singh, and Robert C. Wetherhold. Optimal size and location of piezoelectric actuator/sensors: practical considerations. Journal of Guidance, Control, and Dynamics, 23(3):509-515, 2000.
  • 90. Robert L. Clark and Chris R. Fuller. Optimal placement of piezoelectric actuators and polyvinylidene fluoride error sensors in active structural acoustic control approaches. Journal of the Acoustical Society of America, 92(3):1521-1533,1992.
  • 91. A. M. Sadri, J. R. Wright, and R. J. Wynne. Modelling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms. Smart Materials and Structures, 8(4):490, 1999.
  • 92. S. T. Quek, S. Y. Wang, and K. K. Ang. Vibration control of composite plates via optimal placement of piezoelectric patches. Journal of Intelligent material systems and structures, 14(4-5):29-245, 2003.
  • 93. S. Julai and M. O. Tokhi. Vibration suppression of flexible plate structures using swarm and genetic optimization techniques. Journal of Low Frequency Noise, Vibration and Active Control, 29(4):293-318, 2010.
  • 94. Jae-Hung Han and In Lee. Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms. Smart Materials and Structures, 8(2):257, 1999.
  • 95. Joseph D. Sprofera, Randolph H. Cabell, Gary P. Gibbs, and Robert L. Clark. Structural acoustic control of plates with variable boundary conditions: Design methodology. Journal of the Acoustical Society of America, 122(1):271-279, 2007.
  • 96. James Karki. Signal conditioning piezoelectric sensors. App. rept. on mixed signal products (sloa033a), Texas Instruments Incorporated, 2000.
  • 97. Shashank Priya. Modeling of electric energy harvesting using piezoelectric windmill. Applied Physics Letters, 87(18):184101-184101, 2005.
  • 98. Ramon Pallas-Areny, John G. Webster, and Ramo Areny. Sensors and signal conditioning. Wiley, New York, 2001.
  • 99. Y. B. Jeon, R. Sood, J. Jeong, and S. Kim. Mems power generator with transverse mode thin film PZT. Sensors and Actuators A: Physical, 122(1):16-22, 2005.
  • 100. Walter G. Jung. Op Amp applications handbook. Newnes, 2005.
  • 101. I. Masters and K. Evans. Models for the elastic deformation of honeycombs. Composite Structures, 35(4):403-422, 1996.
  • 102. Gene H. Golub and Charles F. Van Loan. Matrix computations. JHU Press, 2012.
  • 103. Andrei Nikolaevich Tikhonov. Numerical methods for the solution of ill-posed problems. Springer, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f7cf060-6987-44e3-9d2e-8162c59de92f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.