PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of cracking risk of 80MnSi8-6 nanobainitic steel during hot forging in the range of lower temperature limits

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanobainitic steels exhibit an exceptional combination of high strength, good plasticity, impact toughness, and wear resistance. They are suitable for the production of large mass components through the open-die forging process. Subsequently, the forgings are air-cooled. An obstacle of this method is the extended time required for the large forgings to undergo a bainitic transformation, making the industrial implementation of this process economically unjustifiable. Nevertheless, nanobainitic steels also allow for the open-die forging of small batches of structural elements with high property requirements. A technological limitation lies in the necessity of performing a series of operations, leading to a prolonged processing time dependent on the shape of the product and the degree of deformation. Therefore, inter-operational reheating is often necessary, incurring costs and time consumption. This is particularly relevant to forgings with a mass ranging from a few to several dozen kilograms, which, due to their low thermal capacity, rapidly dissipate heat to the surroundings and tools. Designing an economical process with a limited number of reheating cycles requires advanced knowledge of material behavior under thermo-mechanical deformation parameters, including boundary conditions where a significant decrease in plasticity occurs and the risk of crack initiation. To obtain this information, a comprehensive analysis of the influence of thermo-mechanical parameters applied during the deformation of nanobainitic steel at relatively low temperatures on the flow characteristics and crack formation was conducted. To achieve this goal, the Digital Image Correlation method, the finite element method modeling considering damage criteria, and the macrostructural evaluation of deformed specimens were employed.
Wydawca
Rocznik
Strony
171--185
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Mickiewicza 30 Ave., 30-059 Krakow, Poland
  • AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Mickiewicza 30 Ave., 30-059 Krakow, Poland
  • AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Mickiewicza 30 Ave., 30-059 Krakow, Poland
  • AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Mickiewicza 30 Ave., 30-059 Krakow, Poland
Bibliografia
  • [1] Kowalczyk K, Jabłońska M, Rusz S, Junak G. Influence of recrystallization annealing on the properties and structure of low-carbon ferritic steel IF. Arch Metall Mater 2018; 63(4): 1957–61. doi:10.24425/amm.2018.125130.
  • [2] Bhadeshia HKDH. Atomic mechanism of the bainite transformation. J Heat Treatm Mat. 2017; 72(6): 340–345. doi:10.3139/105.110338.
  • [3] Zhang FC, Wang TS, Zhang P, Zhang CL, Lv B, Zhang M, Zhang YZ. A novel method for the development of a low-temperature bainitic microstructure in the surface layer of low-carbon steel. Scr Mater 2008; 59: 294–296. doi:10.1016/j.scriptamat.2008.03.024.
  • [4] Królicka A, Żak A, Kuziak R, Radwański K, Ambroziak A. Decomposition mechanisms of continuously cooled bainitic rail in the critical heat-affected zone of a flash-butt welded joints. Mater Sci-Pol 2021; 39(4): 615–25. doi:10.2478/msp-2022-0002.
  • [5] Zhu Z, Han J, Li H, Lu C. High temperature processed high Nb X80 steel with excellent heat-affected zone toughness. Mater Lett 2016; 163: 171–174. doi:10.1016/j.matlet.2015.10.071.
  • [6] Avishan B, Talebi P, Tekeli S, Yazdani S. Producing nanobainite on carburized surface of a low-carbon low-alloy steel. JMEPEG 2023; 32: 211–220. doi:10.1007/s11665-022-07096-6.
  • [7] Garcia-Mateo C, Caballero FG, Sourmail T, Smanio V, Garcia de Andres C. Industrialised nanocrystalline bainitic steels. Design approach. Int J Mater Res 2014; 105(8): 725–734. doi:10.3139/146.111090.
  • [8] Królicka A, Janik A, Żak A, Radwański K. The qualitative–quantitative approach to microstructural characterization of nanostructured bainitic steels using electron microscopy methods. Mater. Sci.-Pol 2021; 39(2): 188–99. doi:10.2478/msp-2021-0017.
  • [9] Caballero FG., Bhadeshia HKDH, Mawella, KJA, Jones DG, Brown P. Design of novel high strength bainitic steels: Part 2. Mater Sci Technol. 2001; 17: 517–522. doi:10.1179/026708301101510357
  • [10] Sourmail T, Garcia-Mateo C, Caballero FG, Morales-Rivas L, Rementeria R, Kuntz M. Tensile ductility of nanostructured bainitic steels: Influence of retained austenite stability. Metals 2017; 7: 31–37. doi:10.3390/met7010031
  • [11] Sourmail T, Caballero FG, Garcia-Mateo C, Smanio V, Ziegler C, Kuntz M, Elvira R, Leiro A, Vuorinen E, Teeri T. Evaluation of potential of high Si high C steel nanostructured bainite for wear and fatigue applications. Mater Sci Technol 2013; 29(10): 1166–1173. doi:10.1179/1743284713Y.0000000242.
  • [12] Du Y, Wang X, Zhang D, Wang X, Ju C, Jiang B. A superior strength and sliding wear resistance combination of ductile iron with nanobainitic matrix. J Mater Res Technol 2021; 11: 1175–1183. doi:10.1016/j.jmrt.2021.01.104.
  • [13] Rios-Diez, O, Aristiza’bal-Sierra R, Serna-Giraldo C, Eres-Castellanos A, Garcia-Mateo C. Wear behavior of nanostructured carboaustempered cast steels under rolling-sliding conditions. J Mater Res Technol 2021; 11: 1343–1355. doi:10.1016/j.jmrt.2021.01.094.
  • [14] Sukumar G, Senthil PP, Reddy PRS, Singh BB, Ramakrishna B, Kumar KS, Madhu V. Ballistic efficacy of carbide free high strength nano-structured bainitic armour steels. Def Sci J. 2023; 73(2): 131–139. doi:10.14429/dsj.73.18634.
  • [15] Caballero FG, Bhadeshia HKDH, Mawella KJA, Jones DG, Brown P. Very strong low temperature bainite. Mater Sci Technol 2002; 18: 279–284. doi:10.1179/026708301225000725.
  • [16] Garcia-Mateo C, Caballero FG. Design of carbide-free low-temperature ultra high strength bainitic steels. Int J Mat Res 2007; 98(2): 137–143. doi:10.3139/146.101440
  • [17] Garcia-Mateo C, Caballero FG, Sourmail T, Cornide J, Smanio V, Elvira R. Composition Design of nanocrystalline bainitic steels by diffusionless solid reaction. Met Mater Int. 2014; 20(3): 405–415. doi:10.1007/s12540-014-3002-9.
  • [18] Wojtaszek M, Lisiecki Ł, Łukaszek - Sołek A, Korpała G, Zyguła K, Śleboda T, Jabłońska MB, Prahl U. Application of processing maps and numerical modelling for identification of parameters and limitations of hot forging process of 80MnSi8-6 steel. Arch Civ Mech Eng. 2023; 23(4): 1–22. doi:10.1007/s43452-023-00783-8.
  • [19] Sourmai T. Bainite and superbainite in long products and forged applications. HTM. 2017; 72(6): 371–378. doi:10.3139/105.110342.
  • [20] Leiro A, Vuorinen E, Sundin KG, Prakash B. Wear of nano-structured carbide-free bainitic steels under dry rolling-sliding conditions. Wear. 2013; 298–299: 42–47. doi:10.1016/j.wear.2012.11.064.
  • [21] Jabłońska MB, Śmiglewicz A, Niewielski G. The effect of strain rate on the mechanical properties and microstructure of the high-Mn steel after dynamic deformation tests. Arch Metall Mater. 2015; 60(2): 577–80. doi:10.1515/amm-2015-017.
  • [22] Agha A, Abu-Farha F. A Method for Measuring In-Plane Forming Limit Curves Using 2D Digital Image Correlation. SAE Int J Mater Manf. 2023; 16(3): 281–291. doi:10.4271/05-16-03-0019.
  • [23] Szalai S, Csótár H, Kurhan D, Németh A, Sysyn M, Fischer S. Testing of lubricants for dic tests to measure the forming limit diagram of aluminum thin sheet materials. Infrastructures. 2023; 8: 1–14. doi:10.3390/infrastructures8020032.
  • [24] King M, Rahimi S. Optimisation of sample geometry for thermo-mechanical testing of precipitation hardenable nickel-based superalloys with an ETMT machine. Strain. 2023; e12458: 1–18. doi:10.1111/str.12458.
  • [25] Van der Heijde JH, Samad WA. The effect of specimen thickness on the lüders phenomena in aisi 1524 steel alloy: Experimental observations using DIC. Exp Mech. 2023; 63: 885–896. doi:10.1007/s11340-023-00951-0.
  • [26] Champolivier E, Brancherie D, Feissel P, Gaied S, Canourgues J-F. Experimental characterization of forming behavior of 3rd GEN AHSS. IOP Conf. Series: Materials Science and Engineering 2023. 1284, 012077, 1–9. doi:10.1088/1757-899X/1284/1/012077.
  • [27] He T, Liu L, Makeev A, Shonkwiler B. Characterization of stress-strain behaviour of composites using digital image correlation and finite element analysis. Compos Struct. 2016; 140: 84–93. doi:10.1016/j.compstruct.2015.12.018.
  • [28] Roux E, Bouchard PO. On the interest of using full field measurements in ductile damage model calibration. Int J Solids Struct 2015; 72: 50. doi:10.1016/j.ijsolstr.2015.07.011.
  • [29] Sutton MA, Orteu JJ, Schreier H. Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer Science & Business Media; 2009. 332 p.
  • [30] Dumoulin S, Tabourot L, Chappuis C, Vacher P, Arrieux R. Determination of the equivalent stress– equivalent strain relationship of a copper sample under tensile loading. J Mater Process. 2003; 133: 79. doi:10.1016/S0924-0136(02)00247-9.
  • [31] Lisiecka-Graca P, Majta J, Muszka K. Full-field strain measurement and numerical analysis of a microal-loyed steel subjected to deformation with strain path change. Materials. 2020; 11: 1–17. doi:10.3390/ma13235543.
  • [32] Christiansen P, Hattel JH, Bay N, Martins PAF. Modelling of damage during hot forging of ingots: international conference on modelling and simulation of metallurgical processes in steelmaking. STEELSIM 2013 – The 5th International Conference. 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f7c9e75-52fe-4c9b-869c-7eb8c5444922
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.