PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrogen and exotic atoms in rotationally-invariant space with noncommutativity of coordinates and noncommutativity of momenta

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of the noncommutativity of coordinates and noncommutativity of momenta on the spectrum of the hydrogen atom is studied. Corrections to the energy levels of the atom up to the second order in the parameter of noncommutativity are found. Based on the obtained results and the experimental data for the1S−2Stransition frequency, the upper bound for the minimal length is obtained. Also, a two-particle system with Coulomb interaction is examined and hydrogen-like exotic atoms are studied in rotationally-invariant noncommutative phase space.
Rocznik
Strony
1--16
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
  • Professor Ivan Vakarchuk Department for Theoretical Physics, Ivan Franko National University of Lviv, 12 Drahomanov St., Lviv, 79005, Ukraine
  • Professor Ivan Vakarchuk Department for Theoretical Physics, Ivan Franko National University of Lviv, 12 Drahomanov St., Lviv, 79005, Ukraine
Bibliografia
  • [1] M. Chaichian, M. M. Sheikh-Jabbari, and A. Tureanu, “Hydrogen atom spectrum and the Lamb shift in noncommutative QED,”Phys. Rev. Lett., vol. 86, no. 13, pp. 2716–2719, 2001.
  • [2] P.-M. Ho and H.-C. Kao, “Noncommutative quantum mechanics from noncommutative quantum field theory, ”Phys. Rev. Lett.,vol. 88, no. 15, 2002.
  • [3] M. Chaichian, M. M. Sheikh-Jabbari, and A. Tureanu, “Non-commutativity of space-time and the hydrogen atom spectrum, ”Eur. Phys. J. C, vol. 36, no. 2, pp. 251–252, 2004.
  • [4] N. Chair and M. A. Dalabeeh, “The noncommutative quadratic Stark effect for the H-atom,” J. Phys. A, vol. 38, no. 7, pp. 1553–1558, 2005.
  • [5] A. Stern, “Noncommutative point sources, ”Phys. Rev. Lett., vol. 100, no. 6, 2008.
  • [6] S. Zaim, L. Khodja, and Y. Delenda, “Second-order corrections to the non-commutative Klein-Gordon equation with a Coulomb potential,” Int. J. Mod. Phys. A, vol. 26, no. 23, pp. 4133–4144, 2011.
  • [7] T. C. Adorno, M. C. Baldiotti, M. Chaichian, D. Gitman, and T. A., “Dirac equation in noncommutative space for hydrogen atom,” Phys. Lett. B, vol. 682, no. 2, pp. 235–239, 2009.
  • [8] L. Khodja and S. Zaim, “New treatment of the noncommutative Dirac equation with a Coulomb potential,” Int. J. Mod. Phys. A, vol. 27, no. 19, 2012.
  • [9] A. E. F. Djemai and H. Smail, “On quantum mechanics on noncommutative quantum phase space,” Commun. Theor. Phys.,vol. 41, no. 6, pp. 837–844, 2004.
  • [10] K. Li and N. Chamoun, “ Hydrogen atom spectrum in noncommutative phase space,” Chin. Phys. Lett., vol. 23, no. 5, pp. 1122–1123,2006.
  • [11] S. A. Alavi, “Lamb shift and Stark effect in simultaneous space-space and momentum-momentum noncommutative quantum mechanics andθ-deformedsu(2)algebra,”Mod. Phys. Lett. A, vol. 22, no. 5, pp. 377–383, 2007.
  • [12] A. P. Balachandran and A. Pinzul, “On time-space noncommutativity for transition processes and noncommutative symmetries,” Mod. Phys. Lett. A, vol. 20, no. 27, pp. 2023–2034, 2005.
  • [13] A. Stern, “Particlelike solutions to classical noncommutative gauge theory,”Phys. Rev. D, vol. 78, no. 6, 2008.
  • [14] M. Moumni, A. BenSlama, and S. Zaim, “A new limit for the non-commutative spacetime parameter,”J. Geom. Phys., vol. 61, no. 1,pp. 151–156, 2011.
  • [15] M. Moumni, A. BenSlama, and S. Zaim, “Spectrum of hydrogenatom in space-time non-commutativity,” The African Review of Physics, vol. 7, no. 0010, pp. 83–94, 2012.
  • [16] S. Zaim and Y. Delenda, “Noncommutative of space-time and the relativistic hydrogen atom,” J. Phys.: Conf. Ser., vol. 435, 2013.
  • [17] Kh. P. Gnatenko and V. M. Tkachuk, “Hydrogen atom in rotationally invariant noncommutative space,” Phys. Lett. A, vol. 378,no. 47, pp. 3509–3515, 2014.
  • [18] Kh. P. Gnatenko, Yu. S. Krynytskyi, and V. Tkachuk, “Perturbation of the ns levels of the hydrogen atom in rotationally invariant noncommutative space,” Mod. Phys. Lett. A, vol. 30, no. 8. –Art. 1550033. – 12 p., 2015.
  • [19] Kh. P. Gnatenko and V. M. Tkachuk, “Composite system in rotationally invariant noncommutative phase space,” Int. J. Mod. Phys. A., vol. 33, no. 7, p. 1850037, 2018.
  • [20] Kh. P. Gnatenko and V. M. Tkachuk, “Noncommutativ phase space with rotational symmetry and hydrogen atom,” Int. J. Mod. Phys. A., vol. 32, no. 26, p. 1750161, 2017.
  • [21] W.-C. Qiang and S.-H. Dong, “An alternative approach to calculating the mean valuesrkfor hydrogen-like atoms,” Phys. Scripta,vol. 70, no. 5, pp. 276–279, 2004.
  • [22] A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. H ́’ansch, “Precision measurement of the hydrogen1s-2sfrequency via a 920-kmfiber link,” Phys. Rev. Lett., vol. 110, no. 23, 2013.
  • [23] O. Bertolami, J. G. Rosa, C. M. L. Aragão, P. Castorina, and D. Zappalà, “Noncommutative gravitational quantum well,” Phys. Rev. D, vol. 72, no. 2. – Art. – 025010. – 9 p., 2005.
  • [24] O. Bertolami and R. Queiroz, “Phase-space noncommutativity and the Dirac equation,” Phys. Lett. A, vol. 375, no. 2011, pp. 4116–4119, 2011.
  • [25] J. Polchinski,Precision Spectroscopy of Antiprotonic Helium Atoms and Ions – Weighing the Antiproton. In: Karshenboim S.G. (eds) Precision Physics of Simple Atoms and Molecules. Lecture Notes in Physics vol 745. Springer, Berlin, Heidelberg. Springer, Berlin, Heidelberg.
  • [26] A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer,R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants,”Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., vol. 86, no. 1, pp. 1–10, 2010.
  • [27] M. Hori, A. Soter, D. Barn, A. Dax, R. Hayano, S. Friedreich,B. Juh:’asz, T. Pask, E. Widmann, D. Horv:’ath, L. Venturelli, and N. Zurlo, “Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio,” Nature, vol. 475, pp. 484–488, 2011.
  • [28] Kh. P. Gnatenko, “Composite system in noncommutative space and the equivalence principle,” Phys. Lett. A, vol. 377, no. 43,pp. 3061–3066, 2013.
  • [29] Kh. P. Gnatenko and V. M. Tkachuk, “Effect of coordinate non-commutativity on the mass of a particle in a uniform field and the equivalence principle,” Mod. Phys. Lett. A, vol. 31, no. 5,p. 1650026, 2016.
  • [30] Kh. P. Gnatenko and V. M. Tkachuk, “Weak equivalence principle in noncommutative phase space and the parameters of noncom-mutativity,” Phys. Lett. A, vol. 381, no. 31, p. 24632469, 2017.
  • [31] Kh. P. Gnatenko, “Kinematic variables in noncommutative phase space and parameters of noncommutativity,” Mod. Phys. Lett. A,vol. 32, no. 31, p. 1750166, 2017.
  • [32] C. Quesne and V. M. Tkachuk, “Composite system in deformed space with minimal length,” Phys. Rev. A, vol. 81, no. 1, p. 012106, 2010.
  • [33] V. M. Tkachuk, “Deformed Heisenberg algebra with minimal length and the equivalence principle,” Phys. Rev. A, vol. 86, no. 6,p. 062112, 2012.
  • [34] V. M. Tkachuk, “Galilean and Lorentz transformations in a space with generalized uncertainty principle,” Found. Phys., vol. 46,no. 12, p. 16661679, 2016.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f7c8a0a-4c96-4e9f-ab62-c8721ad7c4b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.