PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reliability and risk analysis of multi-state systems with degrading components

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Applications of multi-state approach to the reliability evaluation of systems composed of independent components are considered. The main emphasis is on multi-state systems with degrading components because of the importance of such an approach in safety analysis, assessment and prediction, and analysing the effectiveness of operation processes of real technical systems. The results concerned with multi-state series systems are applied to the reliability evaluation and risk function determination of a homogeneous bus transportation system. Results on homogeneous multi-state “m out of n” systems are applied to durability evaluation of a steel rope. A nonhomogeneous series-parallel pipeline system composed of several lines of multi-state pipe segments is estimated as well. Moreover, the reliability evaluation of the model homogeneous multi-state parallel-series electrical energy distribution system is performed.
Słowa kluczowe
Rocznik
Tom
Strony
205--216
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • Maritime University, Gdynia, Poland
Bibliografia
  • [1] Abouammoh, A, Al-Kadi, M. (1991). Component relevancy in multi-state reliability models. IEEE Transactions on Reliability 40, 370-375.
  • [2] Amari, S. & Misra, R. (1997). Comment on: Dynamic reliability analysis of coherent multi-state systems. IEEE Transactions on Reliability 46, 460-461.
  • [3] Aven, T. (1985). Reliability evaluation of multi-state systems with multi-state components. IEEE Transactions on Reliability 34, 473-479.
  • [4] Aven, T. (1993). On performance measures for multi-state monotone systems. Reliability Engineering and System Safety 41, 259-266.
  • [5] Barlow, R. & Wu, A. (1978). Coherent systems with multi-state components. Mathematics of Operations Research 4, 275-281.
  • [6] Bausch, A. (1987). Calculation of critical importance for multi-state components. IEEE Transactions on Reliability 36, 247-249.
  • [7] Block, H. & Savitis, T. (1982). A decomposition for multi-state monotone systems. J. Applied Probability 19, 391-402.
  • [8] Boedigheimer, R. & Kapur, K. (1994). Customer-driven reliability models for multi-state coherent systems. IEEE Transactions on Reliability 43, 45-50.
  • [9] Brunelle, R. & Kapur, K. (1999). Review and classification of reliability measures for multi-state and continuum models. IEEE Transactions 31, 1117-1180.
  • [10] Butler, D. (1982). Bounding the reliability of multi-state systems. Operations Research 30, 530-544.
  • [11] Cardalora, L. (1980). Coherent systems with multi-state components. Nucl. Eng. Design 58, 127-139.
  • [12] Ebrahimi, N. (1984). Multistate reliability models. Naval Res. Logistics 31, 671-680.
  • [13] El-Neweihi, E., Proschan, F. & Setchuraman, J. (1978). Multi-state coherent systems. J. Applied Probability 15, 675-688.
  • [14] Fardis, M. & Cornell, C. (1981). Analysis of coherent multi-state systems. IEEE Transactions on Reliability 30, 117-122.
  • [15] Griffith, W. (1980). Multi-state reliability models. J. Applied Probability 17, 735-744.
  • [16] Huang, J., Zuo, M. & Wu, Y. (2000). Generalized multi-state k-out-of-n:G systems. IEEE Transactions on Reliability 49, 105-111.
  • [17] Hudson, J. & Kapur, K. (1982). Reliability theory for multi-state systems with multistate components. Microelectronics and Reliability 22, 1-7.
  • [18] Hudson, J. & Kapur, K. (1983). Reliability analysis of multi-state systems with multi-state components. Transactions of Institute of Industrial Engineers 15, 127-135.
  • [19] Hudson, J. & Kapur, K. (1983). Modules in coherent multi-state systems. IEEE Transactions on Reliability 32, 183-185.
  • [20] Hudson, J. & Kapur, K. (1985). Reliability bounds for multi-state systems with multistate components. Operations Research 33, 735-744.
  • [21] Kołowrocki, K. (2004). Reliability of Large Systems. Elsevier: Amsterdam – Boston - Heidelberg - London - New York - Oxford - Paris - San Diego - San Francisco - Singapore - Sydney - Tokyo.
  • [22] Kossow, A. & Preuss, W. (1995). Reliability of linear consecutively-connected systems with multistate components. IEEE Transactions on Reliability 44, 518-522.
  • [23] Levitin, G., Lisnianski, A., Ben Haim, H. & Elmakis, D. (1998). Redundancy optimisation for multi-state series-parallel systems. IEEE Transactions on Reliability 47, 165-172.
  • [24] Levitin, G. & Lisnianski, A. (1998). Joint redundancy and maintenance optimisation for series-parallel multi-state systems. Reliability Engineering and System Safety 64, 33-42.
  • [25] Levitin, G. & Lisnianski, A. (1999). Importance and sensitivity analysis of multi-state systems using universal generating functions method. Reliability Engineering and System Safety 65, 271-282.
  • [26] Levitin, G. & Lisnianski, A. (2000). Optimisation of imperfect preventive maintenance for multi-state systems. Reliability Engineering and System Safety 67, 193-203.
  • [27] Levitin, G. & Lisnianski, A. (2000). Optimal replacement scheduling in multi-state series-parallel systems. Quality and Reliability Engineering International 16, 157-162.
  • [28] Levitin, G. & Lisnianski, A. (2001). Structure optimisation of multi-state system with two failure modes. Reliability Engineering and System Safety 72, 75-89.
  • [29] Lisnianski, A. & Levitin, G. (2003). Multi-state System Reliability. Assessment, Optimisation and Applications. World Scientific Publishing Co., New Jersey, London, Singapore, Hong Kong.
  • [30] Meng, F. (1993). Component-relevancy and characterisation in multi-state systems. IEEE Transactions on Reliability 42, 478-483.
  • [31] Natvig, B. (1982). Two suggestions of how to define a multi-state coherent system. Adv. Applied Probability 14, 434-455.
  • [32] Natvig, B. & Streller, A. (1984). The steady-state behaviour of multi-state monotone systems. J. Applied Probability 21, 826-835.
  • [33] Natvig, B. (1984). Multi-state coherent systems. Encyclopaedia of Statistical Sciences. Wiley and Sons, New York.
  • [34] Ohio, F. & Nishida, T. (1984). On multi-state coherent systems. IEEE Transactions on Reliability 33, 284-287.
  • [35] Piasecki, S. (1995). Elements of Reliability Theory and Multi-state Objects Exploitation (in Polish). System Research Institute, Polish Academy of Science, Warsaw.
  • [36] Polish Norm PN-68/M-80-200. Steel Ropes. Classification and Construction (in Polish).
  • [37] Pourret, O., Collet, J. & Bon, J-L. (1999). Evaluation of the unavailability of a multi-state component system using a binary model. IEEE Transactions on Reliability 64, 13-17.
  • [38] Trade Norm BN-75/2118-01. Cranes. Instructions for Expenditure Evaluation of Steel Ropes (in Polish).
  • [39] Xue, J. (1985). On multi-state system analysis. IEEE Transactions on Reliability 34, 329-337.
  • [40] Xue, J. & Yang, K. (1995). Dynamic reliability analysis of coherent multi-state systems. IEEE Transactions on Reliability 4, 44, 683-688.
  • [41] Xue, J. & Yang, K. (1995). Symmetric relations in multi-state systems. IEEE Transactions on Reliability 4, 44, 689-693.
  • [42] Yu, K., Koren, I. & Guo, Y. (1994). Generalised multi-state monotone coherent systems. IEEE Transactions on Reliability 43, 242-250.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f7c7f1c-156e-45e4-b01c-ecdef904ab4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.