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1. Introduction 

Many technical systems belong to the class of complex 
systems as a result of the progressive ageing of 
components they are built of and their complicated 
operating processes. Taking into account the 
importance of the safety and operating process 
effectiveness of such systems it seems reasonable to 
expand the two-state approach to multi-state approach 
in their reliability analysis. These more general and 
practically important complex systems composed of 
multi-state components are considered among others in 
[1]–[36], [37] and [39]–[42]. An especially important 
role they play in the evaluation of technical systems 
reliability and safety and their operating process 
effectiveness is defined in the paper for systems with 
and degrading (ageing) in time components [5], [21], 
[39]-[41]. The assumption that the systems are 
composed of multi-state components with reliability 
states degrading in time without repair gives the 
possibility for more precise analysis of their reliability, 
safety and operational processes’ effectiveness. This 
assumption allows us to distinguish a system reliability 
critical state to exceed which is either dangerous for 
the environment or does not assure the necessary level 
of its operational process effectiveness. Then, an 
important system reliability characteristic is the time to 
the moment of exceeding the system reliability critical 

state and its distribution, which is called the system 
risk function. This distribution is strictly related to the 
system multi-state reliability function that is a basic 
characteristic of the multi-state system.  
 
2. Multi-state reliability analysis 

In the multi-state reliability analysis to define systems 
with degrading components we assume that:  
–Ei, i = 1,2,...,n, are components of a system,  
– all components and a system under consideration 

have the state set {0,1,...,z}, ,1≥z  
– the state indexes are ordered, the state 0 is the worst 

and the state z is the best,  
– Ti(u),  i = 1,2,...,n,  are independent random variables 

representing the lifetimes of components Ei in the 
state subset {u,u+1,...,z}, while they were in the state 
z at the  moment t = 0,   

– T(u) is a random variable representing the lifetime of 
a system in the state subset {u,u+1,...,z} while it was 
in the state z at the moment t = 0, 

– the system state degrades with time t without repair, 
– ei(t) is a component Ei state at the moment t, 

),,0 ∞∈<t     
– s(t) is a system state at the moment t, ).,0 ∞∈<t   
The above assumptions mean that the states of the 
system with degrading components may be changed in 
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time only from better to worse. The way in which the 
components and the system states change is illustrated 
in Figure 1.  
 
                                              transitions 

 
 
 
 

  
 
 worst state                                                 best state 

Figure 1. Illustration of states changing in system with 
ageing components 
 
Definition 1. A vector   
 
   Ri(t ⋅, ) = [Ri(t,0), Ri(t,1),..., Ri(t,z)], ),,0 ∞∈<t   
 
where   
 
   Ri(t,u) = P(ei(t) ≥ u | ei(0) = z) = P(Ti(u) > t) 
 
for ),,,0 ∞∈<t  u = 0,1,...,z, i = 1,2,...,n, is the 
probability that the component Ei is in the state subset 

},...,1,{ zuu +  at the moment t, ),,0 ∞∈<t  while it 
was in the state z at the moment t = 0, is called the 
multi-state reliability function of a component Ei.  
 
Definition 2. A vector     
 
   Rn(t ⋅, ) = [Rn(t,0), Rn(t,1),..., Rn(t,z)], ),,0 ∞∈<t      
 
where  
 
   Rn(t,u) = P(s(t) ≥ u | s(0) = z) = P(T(u) > t)             (1) 
 
for ),,0 ∞∈<t  u = 0,1,...,z, is the probability that the 

system is in the state subset },...,1,{ zuu +  at the 
moment t, ),,0 ∞∈<t  while it was in the state z at the 
moment t = 0, is called the multi-state reliability 
function of a system.  
 
Under this definition we have    
 
   Rn(t,0) ≥ Rn(t,1) ≥ . . . ≥ Rn(t,z), ),,0 ∞∈<t    
 
and if    
 
   p(t,u) = P(s(t) = u | s(0) = z), ),,0 ∞∈<t   
 

for u = 0,1,...,z, is the probability that the system is in 
the state u at the moment t, ),,0 ∞∈<t  while it was in 
the state z at the moment t = 0, then   
 
   Rn(t,0) = 1, Rn(t,z) = p(t,z), ),,0 ∞∈<t                   (2) 
 
and  
 
   p(t,u) = Rn(t,u) – Rn ),1,( +ut  ),,0 ∞∈<t                (3) 
 
for .,...,1,0 zu =   
                                                      
Moreover, if  
 
   Rn(t,u) = 1 for t ≤ 0, u = 1,2,...,z, 
 
then      
 

   M(u) = ∫
∞

0

Rn(t,u)dt, u = 1,2,...,z,                             (4) 

 
is the mean lifetime of the system in the state subset 

},,...,1,{ zuu +    
 

   
2)]([)()( uMuNu −=σ , u = 1,2,...,z,                   (5) 

 
where   
 

   
∫=
∞

0

2)( tuN Rn(t,u)dt, u = 1,2,...,z,                            (6) 

 
is the standard deviation of the system sojourn time in 
the state subset },...,1,{ zuu +  and moreover    
 

   )(uM = ∫
∞

0

,),( dtutp  u = 1,2,...,z,                             (7) 

 
is the mean lifetime of the system in the state u while 
the integrals (4), (6) and (7) are convergent.  
Additionally, according to (3), (4) and (7), we get the 
following relationship  
 

   ),1()()( +−= uMuMuM  ,1,...,1,0 −= zu      
 
   ).()( zMzM =                                                          (8) 
 
Definition 3. A probability  
 
    r(t) = P(s(t) < r | s(0) = z) = P(T(r) ≤ t), ),,0 ∞∈<t  
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that the system is in the subset of states worse than the 
critical state r, r ∈{1,...,z} while it was in the state z at 
the moment t = 0 is called a risk function of the multi-
state system or, in short, a risk.   
 
Under this definition, from (1), for ),,0 ∞∈<t  we have     
 
    r(t) = −1  P(s(t) ≥ r | s(0) = z) = −1  Rn(t,r),           (9) 
 
and if τ is the moment when the risk exceeds a 
permitted level δ, then   
 

   =τ r ),(1 δ−                                                              (10) 
 
where r )(1 t− , if it exists, is the inverse function of the 

risk function r(t).  
 
3. Basic multi-state reliability structures 

3.1. Multi-state series system  

Definition 4. A multi-state system is called series if its 
lifetime T(u) in the state subset },...,1,{ zuu +  is given 
by  
 
   T(u) = )}({min

1
uTini ≤≤

, u = 1,2,...,z. 

 
The above definition means that a multi-state series 
system is in the state subset },...,1,{ zuu +  if and only 
if all its components are in this subset of states.  
It is easy to work out the following results.  
 
Corollary 1. The reliability function of the multi-state 
series system is given by    
 

   ),( ⋅tnR  = [1, )1,(tnR ,..., ),( ztnR ], 
 
where   
 

   ),( utnR  = ∏
=

n

i
i utR

1
),( , ),,0 ∞∈<t  u = 1,2,...,z. 

 
Corollary 2. If the multi-state series system is 
homogeneous, i.e. if  
 

   ),(),( utRutRi =  for  ),,0 ∞∈<t  u = 1,2,...,z,  
   ,,...,2,1 ni =  
 
then its reliability function is given by    
 

   ),( ⋅tnR  = [1, )1,(tnR ,..., ),( ztnR ], 
 
where   

   ),( utnR  = nutR )],([  for ),,0 ∞∈<t  u = 1,2,...,z. 
 
Example 1 (a bus transportation system). The city 
transportation system is composed of n, ,1≥n buses 
necessary to perform its communication tasks. We 
assume that the bus lifetimes are independent random 
variables and that the system is operating in successive 
cycles (days) c = 1,2,... . In each of the cycles the 
following three operating phases of all components are 
distinguished:  
f1 – components waiting for inclusion in the operation 

process, lasting from the moment t0 up to the 
moment t1,  

f2 – components’ activation for the operation process, 
lasting from t1 up to t2,  

f3 – components operating, lasting from t2 up to  t3 = t0.  
Each of the system components during the waiting 
phase may be damaged because of the circumstances at 
the stoppage place. We assume that the probability that 
at the end moment t1 of the first phase the ith 
component is not failed is equal to )1(

ip , where 

10 )1( ≤≤ ip , ni ,...,2,1= . Since component lifetimes 
are independent then the system availability at the end 
moment t1 of phase f1 is given by  
 

   
.

1

)1()1( ∏=
=

n

i
ipp                                                          (11) 

 
In the activation phase f2 system components are 
prepared for the operation process by the service. They 
are checked and small flaws are removed. Sometimes 
the flaws cannot be removed and particular 
components are not prepared to fulfill their tasks. We 
assume that the probability that at the end moment t2 of 
the first phase the ith component is not failed is equal 
to )2(

ip , where 10 )2( ≤≤ ip , .,...,2,1 ni =  Since 
component lifetimes are independent then the system 
availability at the end moment t2 of the phase f2 is 
given by   
 

   
.

1

)2()2( ∏=
=

n

i
ipp

   
                                                     (12) 

 
Thus, finally, the system availability after two phases 
is given by   
 

   ,)2()1()2,1( ppp ⋅=                                                  (13) 
 
where p(1) and  p(2) are defined respectively by (11) and 
(12).  
In the operating phase f3, during the time 234 ttt −= , 
each of the system components is performing one of 
two tasks:  
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1z − a first task  (working at normal communication 
conditions),  

2z − a second task (working at a communication peak),  

with probabilities respectively equal to 1r and 2r , 

where 10 1 ≤≤ r , r2 
 = 1 – r1. 

Let  
 

   R )1( (t ⋅, ) = [1,R )1( (t,1),R )1( (t,2)], 

 
where  
 

   1),()1( =utR  for t < 0,  
 

   ]
515

1
exp[),()1( t

u
utR

−
−=  for t ≥ 0, u = 1,2, 

 
be the reliability function of the ith component during 
performance of task 1z  and         
 

   R )2( (t ⋅, ) = [1,R )2( (t,1),R )2( (t,2)], 

 
where  
 

   1),()2( =utR  for t < 0,  
 

   ]
210

1
exp[),()2( t

u
utR

−
−=  for t ≥ 0, u = 1,2, 

 
be the reliability function of the ith component during 
performance of task .2z   
Thus, by Definition 4, the considered transportation 
system is a homogeneous three-state series system and 
according to the formula for total probability, after 
applying Corollary 2, we conclude that     
 

   ),( ⋅tnR  = [1, )1,(tnR , )2,(tnR ], 
 
where 
 

   1)1,( =tnR  for t < 0,  
 

   )1,(tnR ]
210

exp[]
515

exp[ 21 t
u

n
rt

u

n
r

−
−+

−
−= (14)  

    for t ≥ 0, u = 1,2,  
 
is the reliability function of the system performing two 
tasks.  
The mean values of the system lifetimes T(u) in the 
state subsets, according to (4), are:  

    M(u) = E[T(u)] =
n

urur )210()515( 21 −+−
  

   for u = 1,2. 
 
If we assume that  
 
   n = 30, r1 = 0.8, r2 = 0.2,  
 
then from (14), we get   
 

   =⋅),(30 tR [1, 0.8exp[−3t]+0.2exp[-3.75t],  
 
                 0.8exp[−6t]+0.2exp[-5t]] for t ≥ 0     (15) 
 
and  
 
   M(1) ≅ 0.32, M(2) ≅ 0.17.    
 
Thus, considering (8), the expected values of the 
sojourn times in the particular states are:  
 

   )1(M  ≅ 0.15, )2(M  ≅ 0.17.  
 
If a critical state is r = 1, then according to (9), the 
system risk function is given by      
 
   r(t) = 1 − 0.8exp[−3t]+0.2exp[-3.75t] for t ≥ 0. 
 
The moment when the system risk exceeds a permitted 
level δ  = 0.05, according to (10), is  
 
   τ = r−1(δ) ≅ 0.016 years ≅ 6 days. 
 
At the end moment of the system activation phase, 
which is simultaneously the starting moment of the 
system operating phase t2 the system is able to perform 

its tasks with the probability )2,1(p  defined by (13). 
Therefore, after applying the formula (15), we 
conclude that the system reliability in c cycles, c = 
1,2,…, is given by the following formula   
 
    G(c,⋅) = [1, )2,1(p 0.8exp[−3ct4]+0.2exp[-3.75 ct4],    
 
                  )2,1(p 0.8exp[−6 ct4]+0.2exp[-5 ct4]],  
 
where t4 = t3 – t2 is the time duration of the system 
operating phase f3. Further, assuming for instance   
 

   
)2,1(p = =⋅= 99.099.0)2()1( pp 0.98,  

 
   t4 = 18 hours = 0.002055 years 
 
for the number of cycles c = 7 days = 1 week, we get  
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   G(7,⋅) ≅ [1, 0.966, 0.902].  
 
This result means that during 7 days the considered 
transportation system will be able to perform its tasks 
in state not worse than the first state with probability 
0.966, whereas it will be able to perform its tasks in the 
second state with probability 0.902.  
 
3.2. Multi-state parallel system 

Definition 5. A multi-state system is called parallel if 
its lifetime T(u) in the state subset },...,1,{ zuu +  is 
given by  
 
   T(u) = )}({max

1
uTi

ni ≤≤
, u = 1,2,...,z. 

 
The above definition means that the multi-state parallel 
system is in the state subset },...,1,{ zuu +  if and only 
if at least one of its components is in this subset of 
states.  
 
Corollary 3. The reliability function of the multi-state 
parallel system is given by  
 
   Rn(t ⋅, ) = [1, Rn(t,1),..., Rn(t,z)], 
 
where   
 

   Rn(t,u) = −1  ∏
=

n

i
i utF

1
),( , ),,0 ∞∈<t  u = 1,2,...,z. 

 
Corollary 4. If the multi-state parallel system is 
homogeneous, i.e. if  
 

   ),(),( utRutRi =  for  ),,0 ∞∈<t  u = 1,2,...,z, 
   ,,...,2,1 ni =  
 
then its reliability function is given by    
 
   Rn(t ⋅, ) = [1, Rn(t,1),..., Rn(t,z)], 
 
where   
 
   Rn(t,u) = −1  nutF )],([  for ),,0 ∞∈<t  u = 1,2,...,z. 
 
3.3. Multi-state “ m out of n”  system 

Definition 6. A multi-state system is called an “m out 
of n” system if its lifetime T(u) in the state subset 

},...,1,{ zuu +  is given by    
 
   T(u) = ),()1( uT mn +− m = 1,2,...,n, u = 1,2,...,z, 

 

where )()1( uT mn +−  is the mth maximal order statistic in 

the sequence of the component lifetimes   
 

   1T (u), 2T (u),..., nT (u). 
 
The above definition means that the multi-state „m out 
of n” system is in the state subset },...,1,{ zuu +  if and 
only if at least m  out of its n  components are in this 
state subset; and it is a multi-state parallel system if m 
= 1 and it is a multi-state series system if m = n.  
 
Corollary 5. The reliability function of the multi-state 
“m out of n” system is given either by    
 
   R )(m

n (t ⋅, ) = [1, R )(m
n (t,1),..., R )(m

n (t,z)], 
 
where   
 

   R ∑−=
−≤+++

=

−1

1...21
0,...,2,1

1)( )],([)],([1),(
mnrrr

nrrr

ir
i

ir
i

m
n utFutRut  

  
for ),,0 ∞∈<t  u = 1,2,...,z, or by 
 

),()( ⋅tm
nR  = [1, ),1,()( tm

nR ..., ),()( ztm
nR ],  

 
where  
 

  

∑=
≤+++
=

−1

...21
0,...,2,1

1)( )],([)],([),(
mnrrr

nrrr

ir
i

ir
i

m
n utRutFutR

 

 
for ),,0 ∞∈<t  ,mnm −=  u = 1,2,...,z. 
 
Corollary 6. If the multi-state “m out of n” system is 
homogeneous, i.e. if  
 

   ),(),( utRutRi =  for  ),,0 ∞∈<t  u = 1,2,...,z,  
   ,,...,2,1 ni =  
 
then its reliability function is given by    
 
   R )(m

n (t ⋅, ) = [1, R )(m
n (t,1),..., R )(m

n (t,z)], 
 
where   
 

   R ∑−=
−

=

−1

0

)( )],([],([1),(
m

k

knkm
n utFutRut  

 
for ),,0 ∞∈<t  u = 1,2,...,z, or by 
 

   ),()( ⋅tm
nR  = [1, ),1,()( tm

nR ..., ),()( ztm
nR ],  
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where  
 

   
∑=
=

−m

k

knkm
n utRutFut

0

)( )],([)],([),(R
 

 
for ),,0 ∞∈<t  ,mnm −=  u = 1,2,...,z. 

Example 2 (a three-stratum rope, durability). Let us 
consider the steel rope of type M-80-200-10 described 
in [36]. It is a three-stratum rope composed of 36 
strands: 18 outer strands, 12 inner strands and 6 more 
inner strands. All strands consist of seven still wires. 
The rope cross-section is presented in Figure 2.  
 
 
 
 
 
 
 
 

 
 
 
 
Figure 2. The steel rope M-80-200-10 cross-section 

 
Considering the strands as basic components we 
conclude that the rope is a system composed of 36=n  
components (strands). Due to [38] concerned with the 
evaluation of wear level, the following reliability states 
of the strands are distinguished: 
state 3 – a strand is new, without any defects,   
state 2 – the number of broken wires in the strand is 
greater than 0% and less than 25% of all its wires, or 
corrosion of wires is greater than 0% and less than 
25%, abrasion is up to 25% and strain is up to 50%, 
state 1 – the number of broken wires in the strand is 
greater than or equal to 25% and less than 50% of all 
its wires, or corrosion of wires is greater than or equal 
to 25% and less than 50%, abrasion is up to 50% and 
strain is up to 50%, 
state 0 – otherwise (a strand is failed).  
Thus, the considered steel rope composed of n = 36 
four-state, i.e. z = 3. Let us assume that the rope 
strands have identical exponential reliability functions 
with transitions rates between the state subsets        

 
   )(uλ = 0.2u/year, u = 1,2,3. 
 

Assuming that the rope is in the state subset 
},...,1,{ zuu +  if at least m = 10 of its wires are in this 

state subset, according to Definition 6, we conclude the 
rope is a homogeneous four-state “10 out of 36” 
system. Thus, by Corollary 6, its reliability function is 
given by    
 

   R ),()10(
36 ⋅t  = [1, R ),1,()10(

36 t  R ),2,()10(
36 t  R )3,()10(

36 t ], (16) 
 
where    
 
   R )1,()10(

36 t  = 1 for t < 0,   
 

   R )1,()10(
36 t = ( ) i

i
i tti −

=
−−−∑− 36

9

0

36 ]]2.0exp[1][2.0exp[1   

   for ,0≥t  
 
   R )2,()10(

36 t  = 1 for t < 0,   
 

   R )2,()10(
36 t = ( ) i

i
i tti −

=
−−−∑− 36

9

0

36 ]]4.0exp[1][4.0exp[1   

   for ,0≥t  
 
   R )3,()10(

36 t  = 1 for t < 0,   
 

   R )3,()10(
36 t = ( ) i

i
i tti −

=
−−−∑− 36

9

0

36 ]]6.0exp[1][6.0exp[1   

   for .0≥t  
 
By (16), the approximate mean values of the rope 
lifetimes T(u) in the state subsets and their standard 
deviations in years are:  
 
   M(1) ≅ 6.66, M(2) ≅ 3.33, M(3) ≅ 2.22,  
 
   σ(1) ≅ 1.62, σ(2) ≅ 0.81, σ(3) ≅ 0.54,  
 
whereas, the approximate mean values of the rope 
lifetimes in the particular reliability states are:  
 

   )1(M  ≅ 3.33, )2(M  ≅ 1.11, )3(M  ≅ 2.22. 
 
If the critical state is r = 2, then the rope risk function 
is approximately given by  
 

   r(t) = ( ) i

i
i tti −

=
−−−∑

36
9

0

36 ]]4.0exp[1][4.0exp[  for .0≥t  

 
The moment when the risk exceeds an admissible level 
δ  = 0.05, after applying (10), is    
 
   τ ≅ 2.074 years.   
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The behaviour of the rope system reliability function 
and its risk function are illustrated in Table 1.   
 

Table 1. The values of the still rope multi-state 
reliability function and risk function   

t  R )1,()10(
36 t  R )2,()10(

36 t  R )3,()10(
36 t  r(t) 

0.2 1.00000 1.00000 1.00000 0.00000 
0.6 1.00000 0.99998 0.99979 0.00002 
1.0 0.99999 0.99961 0.99425 0.00039 
1.4 0.99995 0.99641 0.94590 0.00359 
1.8 0.99979 0.98014 0.77675 0.01986 
2.2 0.99928 0.92792 0.49332 0.07208 
2.6 0.99783 0.81520 0.23107 0.18480 
3.0 0.99425 0.64221 0.08058 0.35779 
3.4 0.98649 0.44415 0.02168 0.55585 
3.8 0.97157 0.26782 0.00469 0.73218 
4.2 0.94590 0.14130 0.00085 0.85870 
4.6 0.90602 0.06584 0.00013 0.93416 
5.0 0.84969 0.02742 0.00002 0.97258 
5.4 0.77675 0.01034 0.00000 0.98966 
5.8 0.68965 0.00357 0.00000 0.99643 
6.2 0.59314 0.00114 0.00000 0.99886 
6.6 0.49332 0.00034 0.00000 0.99966 
7.0 0.39645 0.00010 0.00000 0.99990 
7.4 0.30784 0.00003 0.00000 0.99997 
7.8 0.23107 0.00001 0.00000 0.99999 

 
3.4. Multi-state series-parallel system  

Other basic multi-state reliability structures with 
components degrading in time are series-parallel and 
parallel-series systems. To define them, we assume 
that:  
– Eij, i = 1,2,...,k, j = 1,2,...,l i, k, l1, l2,..., kl  ∈ N, are 

components of a system,  
– all components Eij have the same state set as before 

{0,1,...,z}, 
– Tij(u), i = 1,2,...,k, j = 1,2,...,l i, k, l1, l2,..., kl  ∈ N, are 

independent random variables  representing the 
lifetimes of components  Eij  in  the state subset 

},,...,1,{ zuu +  while they  were  in the state z at the 
moment t = 0,  

– eij(t) is a component Eij state at the moment t, 
),,0 ∞∈<t  while they were in the state z  at the 

moment t = 0. 
 
Definition 7. A vector    
 
   Rij(t ⋅, ) = [Rij(t,0),Rij(t,1),...,Rij(t,z)] for ),,0 ∞∈<t   
   i = 1,2,...,k, j = 1,2,...,l i,,  
 
where     
 

   Rij(t,u) = P(eij(t) ≥ u | eij(0) = z) = P(Tij(u) > t)  
 
for ),,0 ∞∈<t  u = 0,1,...,z, is the probability that the 
component Eij is in the state subset },...,1,{ zuu +  at the 

moment t, ),,0 ∞∈<t  while it was in the state z at the 
moment t = 0, is called the multi-state reliability 
function of a component Eij.  
 
Definition 8. A multi-state system is called series-
parallel if its lifetime T(u) in the state subset 

},...,1,{ zuu +  is given by    
 
   T(u) = )}({min{max

11
uTij

iljki ≤≤≤≤
, u = 1,2,...,z. 

 
Corollary 7. The reliability function of the multi-state 
series-parallel system is given by   
 
   R ),(,...,2,1, ⋅t

klllk  = [1,R )1,(,...,2,1, t
klllk ,...,R ),(,...,2,1, zt

klllk ], 

 
and    
 

   R ),(,...,2,1, ut
klllk  = ∏∏ −−

==

il

j
ij

k

i
utR

11
)],(1[1  for ),,0 ∞∈<t   

   u = 1,2,...,z, 
 
where k is the number of series subsystems linked in 
parallel and l i are the numbers of components in the 
series subsystems.     
 
Corollary 8. If the multi-state series-parallel system is 
homogeneous, i.e.  
 

   
),(),( utRutRij =  for  ),,0 ∞∈<t  u = 1,2,...,z,  

   i = 1,2,...,k, j = 1,2,...,l i,,  
 
then its reliability function is given by    
 
   R ),(,...,2,1, ⋅t

klllk  = [1,R )1,(,...,2,1, t
klllk ,...,R ),(,...,2,1, zt

klllk ], 

 
and    
 

   R ),(,...,2,1, ut
klllk  = ])],([1[1

1

il
k

i
utR∏ −−

=
 for ),,0 ∞∈<t   

   u = 1,2,...,z, 
 
where k is the number of series subsystems linked in 
parallel and l i are the numbers of components in the 
series subsystems.     
 
Corollary 9. If the multi-state series-parallel system is 
homogeneous, i.e.  
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),(),( utRutRij =  for  ),,0 ∞∈<t  u = 1,2,...,z,  

   i = 1,2,...,k, j = 1,2,...,l i,  
 
and regular, i.e.  
 
   l1 = l2 = . . . = kl = l, l ∈ N.  
 
then its reliability function is given by    
 
   R ),(, ⋅tlk  = [1,R )1,(, tlk ,...,R ),(, ztlk ], 

 
and    
 
   R ),(, utlk  = klutR ])],([1[1 −−  for ),,0 ∞∈<t   

   u = 1,2,...,z, 
 
where k is the number of series subsystems linked in 
parallel and l is the number of components in the series 
subsystems.     
 
Example 3 (a pipeline system). Let us consider the 
pipeline system composed of k = 3 lines of pipe 
segments linked in parallel, each of them composed of 
l  = 100 five-state identical segments linked in series. 
The scheme of the considered system is shown in 
Figure 3.  
 
 
 
 
 
 
Figure 3.  The model of a regular series-parallel 
pipeline system 
 
Considering pipe segments as basic components of the 
pipeline system, according to Definition 8, we 
conclude that it is a homogeneous regular five-state 
series-parallel system. Therefore, by Corollary 9, the 
pipeline system reliability function is given by     

 

   R 100,3 (t,⋅) = [1,R ),1,(1000.3 t R ),2,(100,3 t R ),3,(100,3 t  

 
                           R )4,(100,3 t ],                                       

 
where    
 
   R ),(100,3 ut  = 1 − [1 − [R(t,u) 3100]]                          

 
for t ∈ (−∞,∞),    u = 1,2,3,4.                                               
 

Taking into account pipe segment reliability data given 
in their technical certificates and expert opinions we 
assume that they have Weibull reliability functions    
 
    R(t,⋅) = [1, ),1,(tR ),2,(tR ),3,(tR )4,(tR ],  
 
where   
 
   R(t,u) = 1 for t < 0,  
 
   R(t,u) = exp[ )()( utu αβ− ] for t ≥ 0, u = 1,2,3, 4,  
 
with the following parameters:   
 

   ,3)1( =α  ,00001.0)1( =β   
 

   ,5.2)2( =α  ,0001.0)2( =β   
 

   ,2)3( =α  ,0016.0)3( =β  
 

   ,1)4( =α  .05.0)4( =β  
 
Hence it follows that the pipeline system exact 
reliability function is given by  
 
   R3,100(t,⋅) = [1,1 − [1 − exp[−0.001t3]]3,  
 
   1 − [1 − exp[−0.01t5/2]]3, 1 − [1 − exp[−0.16t2]]3, 
 
   1 − [1 − exp[−5t]]3] for t ≥ 0.                                (17) 
 
By (17), the expected values M(u), u = 1,2,3,4, of the 
system sojourn times in the state subsets in years, 
calculated on the basis of the approximate formula are:   
 
   M(1) 
 

   = ])003.0()002.0(3)001.0(3)[3/4( 3/13/13/1 −−− +−Γ  
 
   ≅ 11.72, 
   
   M(2)  
 

   = ])03.0()02.0(3)01.0(3)[5/7( 5/25/25/2 −−− +−Γ   
 
   ≅ 7.67, 
 
   M(3)  
 

   = ])48.0()32.0(3)16.0(3)[2/3( 2/12/12/1 −−− +−Γ   
 
   ≅ 3.23, 
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   M(4) = ])15()10(3)5(3)[2( 111 −−− +−Γ  ≅ 0.37.  
 
Hence, the system mean lifetimes )(uM  in particular 
states are: 
 

   )1(M  ≅ 4.05, )2(M  ≅ 4.44, )3(M  ≅ 2.86,  
 
   )4(M  ≅ 0.37. 
 
If the critical state is r = 2, then the system risk 
function, according (9), is given by    
 
   r(t) = [1 − exp[−0.01t5/2]] 3. 
 
The moment when the system risk exceeds an 
admissible level δ = 0.05, from (10), is   
 

   τ  = r−1(δ) = 5/23 )]1log(100[ δ−−  ≅ 4.62. 
 
The behaviour of the system risk function is presented 
in Table 2 and Figure 4.   
 
Table 2. The values of the piping system risk function 

t  r(t) 
0.0 0.000 
1.5 0.000 
3.0 0.003 
4.5 0.043 
6.0 0.201 
7.5 0.485 
9.0 0.758 
10.5 0.918 
12.0 0.980 
13.5 0.996 
15.0 1.000 
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1

0 5 10 15 t

r (t )

 

Figure 4. The graph of the piping system risk function 
 
 

3.5. Multi-state parallel-series system 

Definition 9. A multi-state system is called parallel-
series if its lifetime T(u) in the state subset  

},...,1,{ zuu +  is given by    
 
    T(u) = )}({max{min

11
uTij

iljki ≤≤≤≤
, u = 1,2,...,z. 

 
Corollary 10. The reliability function of the multi-state 
parallel-series system is given by   
 

   
),(,...,2,1, ⋅t

klllkR =[1, )1,(,...,2,1, t
klllkR ,..., ),(,...,2,1, zt

klllkR ], 

 
and   
 

   
),(,...,2,1, ut

klllkR = ∏∏ −
==

il

j
ij

k

i
utF

11
)],(1[  for ),,0 ∞∈<t   

   u = 1,2,...,z, 
 
where k is the number of its parallel subsystems linked 
in series and l i are the numbers of components in the 
parallel subsystems.      
 
Corollary 11. If the multi-state parallel-series system is 
homogeneous, i.e.  
 

   
),(),( utRutRij =  for  ),,0 ∞∈<t  u = 1,2,...,z,  

   i = 1,2,...,k, j = 1,2,...,l i,,  
 
then its reliability function is given by    
 

   
),(,...,2,1, ⋅t

klllkR =[1, )1,(,...,2,1, t
klllkR ,..., ),(,...,2,1, zt

klllkR ], 

 
and   
 

   
),(,...,2,1, ut

klllkR = ∏ −
=

k

i

ilutF
1

])],([1[  for ),,0 ∞∈<t   

   u = 1,2,...,z, 
 
where k is the number of its parallel subsystems linked 
in series and l i are the numbers of components in the 
parallel subsystems.      
 
Corollary 12. If the multi-state parallel-series system is 
homogeneous, i.e.  
 

   
),(),( utRutRij =  for  ),,0 ∞∈<t  u = 1,2,...,z,  

   i = 1,2,...,k, j = 1,2,...,l i,,  
 
and regular, i.e.  
 
   l1 = l2 = . . . = kl = l, l ∈ N.  
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then its reliability function is given by    
 

   
),(, ⋅tlkR =[1, )1,(, tlkR ,..., ),(, ztlkR ], 

 
and   
 

   
),(, utlkR = klutF ]],([1[ −  for ),,0 ∞∈<t   

   u = 1,2,...,z, 
 
where k is the number of its parallel subsystems linked 
in series and l is the number of components in the 
parallel subsystems.      
 
Example 4 (an electrical energy distribution system). 
Let us consider a model energetic network stretched 
between two poles and composed of three energetic 
cables, six insulators and two bearers and analyze the 
reliability of all cables only. Each cable consists of 36 
identical wires. Assuming that the cable is able to 
conduct the current if at least one of its wires is not 
failed we conclude that it is a homogeneous parallel-
series system composed of k = 3 parallel subsystems 
linked in series, each of them consisting of l  = 36 basic 
components. Further, assuming that the wires are four-
state components, i.e. z = 3, having Weibull reliability 
functions with parameters   
 
   α(u) = 2, β(u) = (7.07)2u − 8, u = 1,2,3. 
 
According to Corollary 12, we obtain the following 
form of the system multi-state reliability function    
 

   
),(36,3 ⋅tR  ≅ [1, [1 −[1- 362 ]]000008007.0exp[ t− ]3,  

 
   [1 −[1- 362 ]]000400242.0exp[ t− ]3, 
 
   [1 − [1- 362 ]]20006042.0exp[ t− ]3] for t ∈ <0,∞).(18) 
 
By (18), the values of the system sojourn times T(u) in 
the state subsystems in months, after applying (4), are 
given by    
 

   E[T(u)] ≅ ∫ −−−
∞

−

0

336282 ]]])07.7(exp[1[1[ dttu   

 
for u = 1,2,3, and particularly    
 
   M(1) ≅ 650,  M(2) ≅ 100, M(3) ≅ 15. 
 
Hence, from (8), the system mean lifetimes in 
particular states are:   
 

   )1(M  ≅ 550, )2(M  ≅ 85, )3(M  ≅ 15. 

If the critical reliability state of the system is r = 2, 
then its risk function, according to (9), is given by    
 
    r(t) ≅ 1− [1 −[1- 362 ]]000400242.0exp[ t− ]3. 
 
The moment when the system risk exceeds an 
admissible level δ  = 0.05, calculated due to (10), is   
 
   τ = r−1(δ) ≅ 76 months. 
 
4. Conclusion  

In the paper the multi-state approach to the reliability 
evaluation of systems with degrading components have 
been considered. Theoretical results presented in have 
been illustrated by examples of their application in 
reliability evaluation of technical systems. These 
evaluations, despite not being precise may be a very 
useful, simple and quick tool in approximate reliability 
evaluation, especially during the design of large 
systems, and when planning and improving their safety 
and effectiveness operation processes.  
The results presented in the paper suggest that it seems 
reasonable to continue the investigations focusing on:  

– methods of improving reliability for multi-
state systems, 

– methods of reliability optimisation for multi-
state systems related to costs and safety of the 
system operation processes, 

– availability and maintenance of multi-state 
systems.  
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