PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the multisummability of WKB solutions of certain singularly perturbed linear ordinary differential equations

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using two concrete examples, we discuss the multisummability of WKB solutions of singularly perturbed linear ordinary differential equations. Integral representations of solutions and a criterion for the multisummability based on the Cauchy-Heine transform play an important role in the proof.
Słowa kluczowe
Rocznik
Strony
775--802
Opis fizyczny
Bibliogr. 10 poz., rys.
Twórcy
autor
  • RIMS, Kyoto University Kyoto 606-8502, Japan
Bibliografia
  • [1] W. Balser, From Divergent Power Series to Analytic Functions, Lecture Notes in Math­ematics, vol. 1582, Springer-Verlag, 1994.
  • [2] S. Bodine, R. Schafke, On the summability of formal solutions in Liouville-Green theory, J. Dynam. Control Systems 8 (2002), 371-398.
  • [3] E. Delabaere, F. Pham, Resurgent methods in semi-classical asymptotics, Ann. Inst. H. Poincare 71 (1999), 1-94.
  • [4] T.M. Dunster, D.A. Lutz, R. Schafke, Convergent Liouville-Green expansions for second-order linear differential equations, with an application to Bessel functions, Proc. Roy. Soc. London, Ser. A 440 (1993), 37-54.
  • [5] T. Kawai, Y. Takei, Algebraic Analysis of Singular Perturbation Theory, Translations of Mathematical Monographs, Vol. 227, Amer. Math. Soc, 2005.
  • [6] T. Koike, R. Schafke, On the Borel summability of WKB solutions of Schrodinger equa­tions with polynomial potentials and its applications, in preparation.
  • [7] R. Schafke, private communication.
  • [8] K. Suzuki, On multisummable WKB solutions of a certain ordinary differential equation of singular perturbation type, Master-thesis, Kyoto University, 2012.
  • [9] K. Suzuki, Y. Takei, Exact WKB analysis and multisummability - A case study -, RIMS Kokyuroku 1861 (2013), 146-155.
  • [10] A. Voros, The return of the quartic oscillator. The complex WKB method, Ann. Inst. H. Poincare 39 (1983), 211-338.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f7a2245-a000-4ac0-8298-6bfee962ac61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.