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1. INTRODUCTION

In this paper we consider a singularly perturbed linear ordinary differential equation
of the following form:

(
η−m

dm

dzm
+ q1(z, η−1)η−(m−1) d

m−1

dzm−1
+ . . .+ qm(z, η−1)

)
ψ(z, η) = 0. (1.1)

Here η is a large parameter and qj(z, η−1) (1 ≤ j ≤ m) is a polynomial of z and η−1,
that is,

qj(z, η
−1) = qj,0(z) + η−1qj,1(z) + η−2qj,2(z) + . . . (finite sum), (1.2)

where qj,k(z) (k = 0, 1, . . .) are polynomials of z. Equation (1.1) admits a formal
solution of the form

ψ̂(z, η) = exp

(
η

∫ z

ζ(z) dz

) ∞∑

n=0

ψn(z)η−(n+1/2), (1.3)
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where ζ(z) is a root of the characteristic equation of (1.1):

ζm + q1,0(z)ζm−1 + . . .+ qm,0(z) = 0. (1.4)

A formal solution of this form is often called a WKB solution of (1.1). The purpose
of this paper is to discuss the multisummability of a WKB solution of (1.1).

The most typical equation of the form (1.1) is the one-dimensional Schrödinger
equation (

η−2 d
2

dz2
−Q(z)

)
ψ(z, η) = 0. (1.5)

In this case a WKB solution can be expressed as

ψ̂±(z, η) = exp

(
±η
∫ z√

Q0(z) dz

) ∞∑

n=0

ψ±,n(z)η−(n+1/2) (1.6)

and, as is well-known, a WKB solution (1.6) is divergent in almost all cases. In the
exact WKB analysis initiated by Voros ([10]) the Borel summation technique is em-
ployed to endow WKB solutions with an analytic meaning and the global behavior
of solutions of (1.5) (e.g., the monodromy group, Stokes multipliers around irregular
singular points, etc.) is successfully analyzed in an explicit manner by using Borel
resummed WKB solutions. (See, for example, [3, 5].) For the Borel summability of
WKB solutions of (1.5) we refer the readers to [2, 4, 6] and references cited there.

However, if we deal with a more general equation of the form (1.1) (for example,
if some perturbative terms (with respect to η−1) are added to the potential Q(z) in
(1.5) like Q(z, η−1) = Q0(z) + η−1Q1(z) + . . .), then it becomes necessary to consider
the so-called multisummability to give an analytic meaning to WKB solutions in
general. As a matter of fact, R. Schäfke ([7]) showed that the following first-order
inhomogeneous ordinary differential equation

(
ε
d

dz
−
(
z − εz2

))
ψ(z, ε) = ε2 (1.7)

with a small parameter ε has a formal solution which is (3, 1)-multisummable. Fur-
thermore, inspired by this result, Suzuki considered an example of the perturbed
Schrödinger equation of the form

(
η−2 d

2

dz2
−
(
z − η−2z2

))
ψ(z, η) = 0 (1.8)

in his master thesis ([8]) and showed that a (suitably normalized) WKB solution of
(1.8) is (4, 1)-multisummable.

In this paper, as a generalization of their results, we discuss the multisummability
of WKB solutions of a third-order homogeneous linear ordinary differential equation
of the form (1.1). To be more specific, we consider

(
η−3 d

3

dz3
+ (zη−3)η−2 d

2

dz2
+ (3 + 2zη−1)η−1 d

dz
+ 2i(z + 1)

)
ψ(z, η) = 0 (1.9)
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as an example and show that (suitably normalized) WKB solutions ψ̂(z, η) of (1.9) is
(8, 5, 1)-multisummable (with respect to η).

In the paper, making use of an integral representation of solutions, we provide a
complete proof of the multisummability for Equation (1.9) as well as that for Equa-
tion (1.8). The proof of the multisummability for (1.8) given below is slightly different
from that of Suzuki ([8]). It is modified so that it becomes applicable to more general
equations such as Equation (1.9). Although we here discuss only particular examples
(1.8) and (1.9) to avoid complicated notations and to make the discussion more concise
and definite, the reasoning employed in this paper can be easily generalized to more
general equations of the form (1.1) as far as it has an integral representation of solu-
tions. Thus we conclude that it is necessary to introduce the multisummability with
several different indices to discuss the summability of WKB solutions of a singularly
perturbed linear ordinary differential equation of the form (1.1) in general.

The paper is organized as follows: First we describe our main results in a specific
manner in Section 2. Then, before proving the main results, we briefly review the
definition of the multisummability in Section 3. Sections 4 and 5 are devoted to the
proofs of the main results. In Appendices A and B we present several figures of steepest
descent paths relevant to the proofs of the main results.

The main results of this paper were already announced in [9].

2. MAIN THEOREMS

Let us now state our main theorems in a more specific manner.
First, let us consider the second order equation discussed by Suzuki in [8]:

(
d2

dz2
− η2

(
z − η−2z2

))
ψ(z, η) = 0, (2.1)

which is a perturbation of the Airy equation. One characteristic feature of Equation
(2.1) is that by the scaling

z = η2x (2.2)

(2.1) is transformed to the Weber equation with a new large parameter ζ = η4:

(
d2

dx2
− (η4)2(x− x2)

)
ψ = 0. (2.3)

To discuss the (multi)summability of WKB solutions of (2.1), we make full use
of the integral representation of solutions for (2.1), which can be obtained in the
following way: a change of unknown functions ψ = exp(−iz2/2)ϕ transforms (2.1) to

(
d2

dz2
− 2iz

d

dz
− η2(z + η−2i)

)
ϕ = 0. (2.4)
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Since Equation (2.4) is of Laplace type, its integral representation of solutions can be
easily constructed via Laplace transform, that is, letting ϕ =

∫
exp(−ηzt)ϕ̂(t)dt, we

find that ϕ̂(t) satisfies the following differential equation of first order:

(−η + 2it)
dϕ̂

dt
+ (η2t2 + i)ϕ̂ = 0. (2.5)

Then, using an explicit form

ϕ̂ = exp

(
η

∫ t u2 + iη−2

1− 2iuη−1
du

)
(2.6)

of solutions of (2.5), we obtain an integral representation of solutions for the original
equation (2.1):

ψ(z, η) =

∫
exp

(
−ηg(t; z, η−1)

)
dt, (2.7)

where the phase function g(t; z, η−1) is given by

g(t; z, η−1) = zt−
∫ t u2 + iη−2

1− 2iuη−1
du+

i

2
z2η−1. (2.8)

Note that, by a change of variables t = iη(s − 1/2), (2.8) can be written also as
(a constant multiple of)

ψ =

∫
exp

(
−η4g̃(s; z, η−1)

)
s−1/2 ds, (2.9)

where
g̃(s; z, η−1) =

i

8

(
2s2 − 4s(1− 2x) + log s+ (1− 2x)2

)
(2.10)

with x = η−2z (cf. (2.2)). The formula (2.10) is a well-known integral representation
of solutions for the Weber equation (2.3).

Let t = t± be a saddle point of g(t; z, η−1), that is, t = t± is a zero of

∂g

∂t
= z − t2 + iη−2

1− 2itη−1
= 0, (2.11)

more explicitly,
t± = −iη−1z ∓

√
z − η−2(z2 + i). (2.12)

We also denote the top order part (with respect to η−1) of g and t± by g0 and t±,0,
respectively. Then,

g0 = g0(t, z) = zt− t3

3
, t±,0 = ∓√z and

∂g0

∂t
(t±,0, z) = 0 (2.13)

hold. Let Γ± be a steepest descent path of <(−ηg) passing through the saddle point
t± and let ψ±(z, η) denote a solution of (2.1) defined by

ψ±(z, η) =

∫

Γ±

exp
(
−ηg(t; z, η−1)

)
dt = exp (−ηg0(t±,0, z))ψ

(0)
± (z, η), (2.14)
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where

ψ
(0)
± (z, η) = exp

(
−η(g(t±; z, η−1)− g0(t±,0, z))

)
(2.15)

×
∫

Γ±

exp
(
−η(g(t; z, η−1)− g(t±; z, η−1))

)
dt.

Note that the exponential term of ψ±(z, η) satisfies

− d

dz

(
g0(t±,0, z)

)
= −∂g0

∂t
(t±,0, z)

dt±,0
dz
− ∂g0

∂z
(t±,0, z) = −t±,0 = ±√z. (2.16)

We now consider the asymptotic expansion of the integral
∫

Γ±

exp
(
−η(g(t; z, η−1)− g(t±; z, η−1))

)
dt (2.17)

with respect to η (for fixed z). Since the contribution to the asymptotic expansion
only comes from an arbitrarily small neighborhood of the saddle point t = t± and
g(t; z, η−1) is analytic (in η−1) there, it suffices to discuss the integral of the form

∞∑

k=0

η−k
∫

along Γ±, |t− t±| : small

exp (−η(g0(t, z)− g0(t±,0, z)))Ak(t, z) dt (2.18)

where Ak(t, z) is an analytic function of (t, z). Then, by applying the saddle point
method to each coefficient of η−k of (2.18) (or, by introducing a new variable θ =
g0(t, z)−g0(t±,0, z) and applying Watson’s lemma (cf., e.g., [1, §2.1, Theorem 1])), we
find that ψ(0)

± (z, η) has an asymptotic expansion of the following form when η →∞:

ψ
(0)
± (z, η) ∼= ψ̂

(0)
± (z, η)

def
=
∞∑

n=0

ψ±,n(z)η−(n+1/2). (2.19)

Furthermore, (2.19) holds in the sense of Gevrey order 1 (see in Section 3 below for
the precise meaning of Gevrey asymptotics). Hence, in view of (2.16), we have

ψ±(z, η) ∼= ψ̂±(z, η)
def
= exp

(
±η
∫ z√

z dz

) ∞∑

n=0

ψ±,n(z)η−(n+1/2). (2.20)

Since ψ±(z, η) is a solution of (2.1), its asymptotic expansion ψ̂±(z, η) also satisfies
(2.1) formally. Hence it coincides with a (suitably normalized) WKB solution of (2.1).

The main result of Suzuki’s paper [8] is concerned with this WKB solution
ψ̂±(z, η).

Theorem 2.1 ([8]). The formal power series part ψ̂(0)
± (z, η) of the WKB solution

ψ̂±(z, η) of (2.1) is (4, 1)-multisummable with respect to η−1. To be more precise, for
each fixed z, ψ̂(0)

± (z, η) is (4, 1)-multisummable with respect to η−1 except for a finite
number of singular directions.
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As the second example, let us next consider the following third-order differential
equation:

(
d3

dz3
+ (zη−3)η

d2

dz2
+ (3 + 2zη−1)η2 d

dz
+ 2i(z + 1)η3

)
ψ(z, η) = 0, (2.21)

with the characteristic equation

ζ3 + 3ζ + 2i(z + 1) = 0. (2.22)

In parallel to the case of the first example (2.1), (2.21) admits the following two
different scalings. Firstly, by the scaling z = η3x1 and ζ1 = η5, (2.21) is transformed
to
(
d3

dx3
1

+ (x1ζ
−1/5)ζ1

d2

dx2
1

+ (3ζ
−2/5
1 + 2x1)ζ2

1

d

dx1
+ 2i(x1 + ζ

−3/5
1 )ζ3

1

)
ψ = 0 (2.23)

and, secondly, by the scaling z = η5x2 and ζ2 = η8, (2.21) is transformed to
(
d3

dx3
2

+ x2ζ2
d2

dx2
2

+ (3ζ
−1/2
2 + 2x2)ζ2

2

d

dx2
+ 2i(x2ζ

−1/8
2 + ζ−3/4)ζ3

2

)
ψ = 0. (2.24)

Similarly to (2.1), as Equation (2.21) itself is of Laplace type, (2.21) also has the
following integral representation of solutions:

ψ(z, η) =

∫
exp

(
−ηh(t; z, η−1)

)
dt, (2.25)

with

h(t; z, η−1) = zt−
∫ t u3 + (3− 2η−4)u− 2i+ 2η−2

η−3u2 − 2η−1u+ 2i
du. (2.26)

Note that, by a change of variables t = η2s, (2.25) can be written also as

ψ =

∫
exp

(
−η8h̃(s; z, η−1)

)
ds, (2.27)

where

h̃(s; z, η−1) = x2s−
∫ s v3 + (3η−4 − 2η−8)v − 2iη−6 + 2η−8

v2 − 2v + 2iη−1
dv (2.28)

with x2 = η−5z.
In the case of Equation (2.21) there exist three saddle points of h(t; z, η−1), which

are denoted by t = tj (j = 1, 2, 3). Denoting the top order part of h and tj by h0 and
tj,0, respectively, we find that

∂h0

∂t
(t, z) = − i

2

(
−t3 − 3t+ 2i(z + 1)

)
and

∂h0

∂t
(tj,0, z) = 0 (2.29)
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hold. Let Γj (j = 1, 2, 3) be a steepest descent path of <(−ηh) passing through the
saddle point t = tj and let ψj(z, η) be a solution of (2.21) defined by

ψj(z, η) =

∫

Γj

exp
(
−ηh(t; z, η−1)

)
dt = exp (−ηh0(tj,0, z))ψ

(0)
± (z, η), (2.30)

where

ψ
(0)
± (z, η) = exp

(
−η(h(tj ; z, η

−1)− h0(tj,0, z))
)

(2.31)

×
∫

Γj

exp
(
−η(h(t; z, η−1)− h(tj ; z, η

−1))
)
dt.

In view of (2.22) and (2.29), we can readily confirm that the derivative (with respect
to z)

− d

dz

(
h0(tj,0, z)

)
= −∂h0

∂t
(tj,0, z)

dtj,0
dz
− ∂h0

∂z
(t±,0, z) = −tj,0 (2.32)

of the exponential term of ψj(z, η) is a root of the characteristic equation (2.22).
Then, by the same reasoning as above for the solution ψ±(z, η) of (2.1), we obtain a
WKB solution ψ̂j(z, η) of (2.21) through the asymptotic expansion of ψj(z, η):

ψj(z, η) ∼= ψ̂j(z, η)
def
= exp

(
η

∫ z

ζj(z) dz

) ∞∑

n=0

ψj,n(z)η−(n+1/2), (2.33)

where ζj(z) (j = 1, 2, 3) is a root of the characteristic equation (2.22). Let ψ̂(0)
j (z, η)

denote the formal power series part of ψ̂j(z, η):

ψ̂j(z, η) = exp

(
η

∫ z

ζj(z) dz

)
ψ̂

(0)
j (z, η). (2.34)

Our second main theorem is then the following:

Theorem 2.2. The formal power series part ψ̂(0)
j (z, η) (j = 1, 2, 3) of the WKB

solution ψ̂j(z, η) of (2.21) is (8, 5, 1)-multisummable with respect to η−1.

Thus, to describe the multisummability of WKB solutions of (2.21), we need two
other different indices 8 and 5 in addition to the index 1.

In what follows we give a proof of Theorems 2.1 and 2.2.

3. BRIEF REVIEW OF THE MULTISUMMABILITY

As a preparation for the proof of the main theorems, following [1], we review the
definition and some fundamental properties for the multisummability in this section.
We basically employ the same notation as in [1] except that we use a large parameter
η here instead of a small parameter ε = η−1 as an asymptotic parameter.
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First, let us recall the definition of the k-summability.

Definition 3.1 (k-summability). Let k > 0 be a positive real number and f̂ =∑
n fnη

−n be a formal power series of η−1. Then f̂ is said to be k-summable in the
direction d if and only if LdkB̂kf̂ is well-defined.

Here B̂kf̂ denotes the formal k-Borel transform of f̂ :
(
B̂kf̂

)
(y) =

∞∑

n=0

fn
Γ(1 + n/k)

yn, (3.1)

and Ldkg denotes the k-Laplace transform of g in the direction d:

(
Ldkg

)
(η) = ηk

∞eid∫

0

exp
(
−(yη)k

)
g(y) d(yk), (3.2)

where the integration from 0 to ∞ is done along arg y = d. Note that the Borel
summability is nothing but the 1-summability under this terminology.

It is known (cf., e.g., [1, §3.1, Theorem 1]) that the k-summability of f̂ is equivalent
to the existence of an analytic function f(η) whose Gevrey asymptotic expansion of
order k is given by f̂ in a sector

S = S(d, α, ρ) = {η ∈ C | d− α/2 < arg η < d+ α/2, |η| > ρ−1}
with α > π/k:

f(η) ∼=k f̂ =
∞∑

n=0

fnη
−n as η →∞ in S, (3.3)

that is, for every closed subsector S1 of S and every non-negative integer N

|η|N
∣∣∣∣∣f(η)−

N−1∑

n=0

fnη
−n
∣∣∣∣∣ ≤ CK

NΓ(1 +N/k) (3.4)

holds in η ∈ S1 with positive constants C,K > 0 independent of N .
Next, we recall the definition of the multisummability.

Definition 3.2 (multisummability). Let k = (k1, . . . , kq) be a q-tuple of positive real
numbers {kj} (1 ≤ j ≤ q) satisfying k1 > k2 > . . . > kq > 0 and f̂ =

∑
n fnη

−n be a
formal power series of η−1. Then f̂ is said to be k-multisummable in the direction d
if and only if the following functions {fj} (0 ≤ j ≤ q) are successively well-defined:

fq := B̂kq f̂ ,
fq−1 := Adkq−1,kqfkq ,

. . . (3.5)
f1 := Adk1,k2f2,

f0 := Ldk1f1.
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Here Ad
k̃,k

= Bk̃ ◦ Ldk denotes the acceleration operator introduced by Ecalle, that is,

(
Ad
k̃,k
g
)

(η) = ηk
∞eid∫

0

Ck̃/k
(
(yη)k

)
g(y) d(yk), (3.6)

where the integration is done along arg y = d from 0 to ∞ and the kernel function
Cα(z) (α > 1) is given as follows:

Cα(z) =
1

2πi

∫

γ

u1/α−1 exp
(
u− zu1/α

)
du, (3.7)

where γ is a path going from −∞ to −δ (δ > 0) along the negative real axis, encircling
the origin anti-clockwise once, and returning to −∞ again along the negative real axis.
When f̂ is k-summable, the function f0 defined by (3.5) is called the k-sum of f̂ .

Remark 3.3. The multisummability is usually defined in the (admissible) multi-
direction d = (d1, . . . , dq), that is, in the definition of fj in (3.5), we use different
directions dj as fj−1 = Adjkj−1,kj

fkj for 2 ≤ j ≤ q and f0 = Ld1k1f1. In this paper,
however, we only consider the multisummability in a fixed single direction d for the
sake of simplicity.

Roughly speaking, the multisummability deals with the situation where we need
to consider the kj-summability with several different indices kj simultaneously, as is
clearly shown by the following characterization of the multisummable series.

Proposition 3.4 ([1, §6.2 and §6.3]). Suppose kq > 1/2. Then a formal power series
f̂ is (k1, . . . , kq)-multisummable in the direction d if and only if f̂ can be decomposed
into the sum of kj-summable series f̂j in the direction d, that is,

f̂ =

q∑

j=1

f̂j , where f̂j: kj-summable in d. (3.8)

The following criterion for the multisummability is also very useful in verifying
the multisummability of a given formal power series.

Proposition 3.5 ([1, §6.7, Proposition 3]). Let a formal power series f̂ =
∑
n fnη

−n

of η−1 be given. Let Ij (1 ≤ j ≤ q) be closed intervals Ij = [d− π/(2kj), d+ π/(2kj)]
so that d ∈ I1 ⊂ I2 ⊂ . . . ⊂ Iq holds, and assume kq > 1/2. Suppose that there exist
ε > 0, ρ > 0 and ϕ0 with Iq ⊂ [ϕ0, ϕ0 + 2π] such that the following holds: For any θ
with ϕ0 ≤ θ ≤ ϕ0 + 2π we may find f(η; θ) satisfying

(i) f(η; θ) is analytic in Sθ = S(θ, ε, ρ),
(ii) f(η; θ) is bounded as η →∞,
(iii) for every θ1 and θ2 with |θ1 − θ2| < ε (i.e., Sθ1 ∩ Sθ2 6= ∅) the following holds:

If θ1, θ2 ∈ I1, then
f(η; θ1) = f(η; θ2). (3.9)
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If θ1, θ2 ∈ Ij for some j, 2 ≤ j ≤ q, then
f(η; θ1)− f(η; θ2) ∼=kj−1

0 in Sθ1 ∩ Sθ2 . (3.10)

If either θ1 or θ2 is not in Iq, then

f(η; θ1)− f(η; θ2) ∼=kq 0 in Sθ1 ∩ Sθ2 . (3.11)

(iv) f(η;ϕ0) = f(ηe2πi;ϕ0 + 2π) in Sϕ0
,

(v) f(η; d) ∼=kq f̂ in Sd.

Then f̂ is (k1, . . . , kq)-multisummable in the direction d.

Remark 3.6. Proposition 3.5 is proved by using the so-called Cauchy-Heine trans-
form and Proposition 3.4. For the Cauchy-Heine transform see [1, Chap. 4]. Note also
that Proposition 3.5 still holds if we replace conditions (3.10) and (3.11) by

f(η; θ1)− f(η; θ2) = O
(

exp
(
−c|η|kj−1

))
in Sθ1 ∩ Sθ2 for some c > 0 (3.10)’

and

f(η; θ1)− f(η; θ2) = O
(

exp
(
−c|η|kq

))
in Sθ1 ∩ Sθ2 for some c > 0, (3.11)’

respectively. In what follows, we use Proposition 3.5 in this modified form.

4. STRUCTURE OF STOKES PHENOMENA FOR WKB SOLUTIONS OF (2.1)
AND (2.21)

One of the key steps in the proof of the main theorems is to investigate what kinds
of Stokes phenomena occur with WKB solutions when arg η varies from 0 to 2π for
fixed z. In the current situation, as there exist integral representations of solutions, this
can be explicitly done by analyzing the change of the configuration of the steepest
descent paths. In this section, examining the configuration of the steepest descent
paths with the aid of a computer, we study the structure of Stokes phenomena for
WKB solutions of (2.1) and (2.21).

4.1. CASE OF (2.1)

In the case of Equation (2.1) the structure of Stokes phenomena for WKB solutions
was investigated in [8] in a detailed manner. We first review the results of [8] in this
subsection.

For the sake of definiteness, we fix z as z = 1 + i in what follows. Figure 1 shows
the configuration of the steepest descent paths Γ± passing through the saddle points
t = t± of the integral representation (2.7) near arg η = 0. In Figure 1 we take |η| = 10
and a unique singular point t = −iη/2 is designated by tsing. (In writing Figure 1,
we use the integral representation (2.9) instead of (2.7), since |tsing| becomes too
large in the original integral representation (2.7). As these two integrals are related
by a simple change of integration variable t = iη(s − 1/2), i.e., by a scaling and a
translation, they are completely equivalent.)
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tsing
t+

t−

arg η = −π/50 arg η = 0

tsing t+

t−

arg η = π/50

Fig. 1. Configuration of steepest descent paths of (2.9) near arg η = 0

Figure 1 clearly visualizes that the configuration of the steepest descent paths Γ±
for arg η < 0 is different from that for arg η > 0. For example, Γ− for arg η < 0 goes
to ∞ after emanating from t− and encircling the singular point tsing in a clockwise
manner, while Γ− for arg η > 0 ends at tsing. This change of the configuration of
Γ− causes a Stokes phenomenon for ψ̂−(z, η) (or ψ̂(0)

− (z, η)) to occur in the following
way: Let Γ± and Γ̃± (resp., ψ±(z, η) and ψ̃±(z, η)) denote the steepest descent paths
passing through t± (resp., the corresponding solutions of (2.1) defined by (2.14)) for
arg η < 0 and arg η > 0, respectively. Then it follows from Figure 1 that Γ− = Γ̃−+Γ̃†,
where Γ̃† is a path emanating from t = tsing and going to ∞ through t+, that is, a
path homotopic to Γ̃+. Hence, we have

ψ−(z, η) =

∫

Γ−

exp
(
−ηg(t; z, η−1)

)
dt = ψ̃−(z, η) +

∫

Γ̃†

exp
(
−ηg(t; z, η−1)

)
dt. (4.1)

Note that, although Γ̃† is homotopic to Γ̃+, the second term of the right-hand side of
(4.1) is not equal to ψ̃+(z, η) since the branch of g(t; z, η−1) on Γ̃† differs from that
on Γ̃+ due to the singularity t = tsing. Now for the phase function g(t; z, η−1) of (2.7)
we have

Lemma 4.1.
Res

t=tsing

∂g

∂t
(t; z, η−1) =

i

8
η3(1− 4iη−4). (4.2)

Hence, combining (4.1) and (4.2), we obtain

ψ−(z, η) = ψ̃−(z, η) + exp
(
−π

4
η4(1− 4iη−4)

)
ψ̃+(z, η), (4.3)

or, equivalently,

ψ
(0)
− (z, η)− ψ̃(0)

− (z, η) (4.4)

= exp
(
−π

4
η4(1− 4iη−4)

)
exp (η(g0(t−,0, z)− g0(t+,0, z)) ψ̃

(0)
+ (z, η)

= O
(
exp(−c|η|4)

)
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with some constant c > 0. Since ψ(0)
− (z, η) and ψ̃

(0)
− (z, η) are analytic realizations

of ψ̂(0)
− (z, η) (i.e., the asymptotic expansion of both analytic solutions are given by

ψ̂
(0)
− (z, η)) when arg η < 0 and arg η > 0, respectively, we thus conclude that a Stokes

phenomenon of exponential order 4 occurs with ψ̂(0)
− (z, η) near arg η = 0.

Similarly, it also follows from Figure 1 that Γ+ = Γ̃+ + Γ̃† holds and hence we
obtain

ψ
(0)
+ (z, η)− ψ̃(0)

+ (z, η) = exp
(
−π

4
η4(1− 4iη−4)

)
ψ̃

(0)
+ (z, η) = O

(
exp(−c′|η|4)

)
(4.5)

with another constant c′ > 0. Thus, a Stokes phenomenon of exponential order 4 also
occurs with ψ̂(0)

+ (z, η) near arg η = 0.
Such Stokes phenomena of exponential order 4 occur near arg η = kπ/4 with

k = 0, 1, . . . , 5 for ψ̂
(0)
− (z, η) and near arg η = kπ/4 with k = −4,−3, . . . , 1 for

ψ̂
(0)
+ (z, η). This can be confirmed by tracing the configuration of steepest descent

paths from arg η = 0 to 2π. See Appendix A, where figures of steepest descent paths
are given for several different values of arg η ∈ [0, 2π).

On the other hand, a different kind of Stokes phenomenon occurs near arg η =
5π/8. Figure 2 shows the configuration of steepest descent paths passing through
t = t± near arg η = 5π/8.

tsing t+
t−

arg η = 12π/20

tsing t+
t−

arg η = 13π/20

Fig. 2. Configuration of steepest descent paths of (2.9) near arg η = 5π/8

Again let us denote by Γ± and Γ̃± etc. the steepest descent paths passing through
t± for arg η < 5π/8 and arg η > 5π/8, respectively. Then Figure 2 implies that
Γ− = Γ̃− + Γ̃+ and hence we have

ψ−(z, η) = ψ̃−(z, η) + ψ̃+(z, η). (4.6)

Note that there is no difference with the branch of g(t; z, η−1) in this case. In other
words, the singularity t = tsing is not relevant to the Stokes phenomenon near arg η =
5π/8. Thus, we obtain

ψ−(z, η) = ψ̃−(z, η) + ψ̃+(z, η), (4.7)
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or equivalently,

ψ
(0)
− (z, η)− ψ̃(0)

− (z, η)

= exp (η(g0(t−,0, z)− g0(t+,0, z)) ψ̃
(0)
+ (z, η) = O

(
exp(−c′′|η|)

) (4.8)

with some constant c′′ > 0, that is, near arg η = 5π/8 a Stokes phenomenon of
exponential order 1 occurs with ψ̂(0)

− (z, η).
Summing up, we obtain the following proposition.

Proposition 4.2. Let z = 1 + i be fixed. Then, when arg η varies from 0 to 2π, the
following two types of Stokes phenomena occur with ψ̂(0)

± (z, η).

(type A)
ψ

(0)
∗ (z, η)− ψ̃(0)

∗ (z, η) = O(exp(−c|η|)), (4.9)

where ψ(0)
∗ (z, η) and ψ̃(0)

∗ (z, η) denote the analytic realizations of ψ̂(0)
∗ (z, η) (∗ = ±)

in neighboring two sectors, respectively, and c is a positive constant. This type of
Stokes phenomena occurs near arg η = 5π/8 for ψ̂(0)

− (z, η), and near arg η = 13π/8

for ψ̂(0)
+ (z, η).

(type B)
ψ

(0)
∗ (z, η)− ψ̃(0)

∗ (z, η) = O(exp(−c|η|4)). (4.10)

This type of Stokes phenomena occurs at arg η = kπ/4 with k = 0, 1, . . . , 5 for
ψ̂

(0)
− (z, η), and at arg η = kπ/4 with k = −4,−3, . . . , 1 (modulo 2π) for ψ̂(0)

+ (z, η).

Remark 4.3. As will become clear in the proof of Theorem 2.1 explained in Sec-
tion 5.1, (4, 1)-multisummability of WKB solutions of (2.1) follows from the occur-
rence of these two types Stokes phenomena with different exponential orders. In par-
ticular, the occurrence of Stokes phenomena of type B plays an important role and
it is an immediate consequence of the fact that the residue of η(∂g/∂t) at t = tsing

is O(η4), i.e., of exponential order 4 with respect to η. This is also related to the
existence of the scaling (2.2) that transforms (2.1) into (2.3).

Remark 4.4. In the proof of Proposition 4.2, to compute explicit values of arg η
where Stokes phenomena occur numerically, we investigate the configuration of steep-
est descent paths by taking |η| = 10. However, what we need to prove for Theorem 2.1
is the limiting value of arg η for |η| → ∞. In this sense the argument in this section is
an approximating one but, since the configuration of steepest descent paths depends
continuously on η, we can deduce several important properties for the limiting value
(for |η| → ∞) of arg η where a Stokes phenomenon occurs from the above results.

For example, as is clear from the above argument, a Stokes phenomenon of type B
occurs when saddle points are connected by a steepest descent path that encircles
the singular point t = tsing. In the limit |η| → ∞ this is possible only when the top
order part of −2πiηRes (∂g/∂t) with respect to η (i.e., the top order contribution to
a contour integral around tsing) becomes real, that is, when Im η4 = 0. This clearly
explains why Stokes phenomena of type B occur only when arg η is an integral multiple
of π/4 in Proposition 4.2.
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Similarly, in the limit |η| → ∞ it is naturally expected that a Stokes phenomenon
of type A, which is of exponential order 1, is closely related to a Stokes phenomenon
of the Airy equation (d2/dz2 − η2z)ψ(z, η) = 0. As is well known, Stokes phenomena
of the Airy equation occur if and only if =(ηz3/2) = 0. Since arg z = π/4 in the
current situation of Proposition 4.2, this implies a Stokes phenomenon of the Airy
equation occurs at arg η = 5π/8 and 13π/8. This is also consistent with the results of
Proposition 4.2.

Remark 4.5. A Stokes phenomenon occurs only when a steepest descent path passing
through a saddle point hits another saddle point. (Otherwise, a steepest descent path
can be extended to infinity and ψ̂

(0)
± (z, η) has an analytic realization there.) The

most important consequence of Proposition 4.2 is that there are two types of Stokes
phenomena for Equation (2.1), that is, a Stokes phenomenon of type A and that of
type B: The former one (resp., the latter one) occurs when a steepest descent path
hits another saddle point without encircling (resp., after encircling) the singular point
t = tsing. Since the distance between two saddle points of (2.7) is O(η0) while the
distance between a saddle point and the singular point t = tsing is O(η1), in the limit
|η| → ∞ these two types of Stokes phenomena can be completely distinguished.

In the proof of Proposition 4.2, to visualize the configuration of steepest descent
paths and to compute explicit values of arg η where Stokes phenomena occur, we have
assumed z = 1+ i, but this assumption is not essential: As the integral representation
(2.7) exists for all values of z (z is just a parameter in the above investigation of
(2.7)), the above two types of Stokes phenomena occur at several exceptional values
of arg η for arbitrarily fixed z and except for such exceptional values of arg η steepest
descent paths passing through saddle points can be extended to infinity and ψ̂(0)

± (z, η)
has an analytic realization. (In general, the exact value of arg η where a Stokes phe-
nomenon of type A occurs depends on z, while a Stokes phenomenon of type B occurs
only when arg η is an integral multiple of π/4. See Remark 4.4 above.) The concrete
numerical studies, which are possible for every z ∈ C, are needed only to compute the
explicit values of arg η where Stokes phenomena occur. Hence a proposition similar
to Proposition 4.2 and consequently Theorem 2.1 can be considered to hold also for
every z ∈ C.

4.2. CASE OF (2.21)

In parallel to the preceding subsection, we investigate the structure of Stokes phe-
nomena for WKB solutions of (2.21) by analyzing the change of the configuration of
the steepest descent paths of the integral representation (2.25) in this subsection.

The integral representation (2.25) has two singular points at zeros of η−3t2 −
2η−1t + 2i = 0, that is, at t = η2 ±

√
η4 − 2iη3. We will denote them by tsing0 and

tsing1 : {
tsing0 = η2(1 +

√
1− 2iη−1) = 2η2(1 +O(η−1)),

tsing1 = η2(1−
√

1− 2iη−1) = iη(1 +O(η−1)).
(4.11)

The following lemma plays a crucially important role in the discussion hereafter.
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Lemma 4.6.

Res
t=tsing

0

∂h

∂t
(t; z, η−1) = −4η7

(
1 +O(η−1)

)
. (4.12)

Res
t=tsing

1

∂h

∂t
(t; z, η−1) = − i

2
η4
(
1 +O(η−1)

)
. (4.13)

We again fix z as z = 1 + i for the sake of definiteness. Figures 3 and 4 show the
configuration of the steepest descent paths Γj passing through the saddle points t = tj
(j = 1, 2, 3) of the integral representation (2.25) near arg η = 0. (In Figures 3 and 4
as well as in figures in Appendix B we take |η| = 20. As in the preceding subsection,
instead of (2.25) we use the integral representation (2.27) since the singular points
tsingk (k = 0, 1) becomes too large in (2.25). However, the use of (2.27) makes it difficult
to distinguish the saddle points tj (j = 1, 2, 3) and tsing1 . Therefore, in presenting the
configuration of steepest descent paths of (2.27), we also use two magnified figures, i.e.,
a magnified figure in the middle in Figures 3 and 4 so that tsing1 may be distinguished
from tj , and a more magnified one in the right so that tj may be distinguished from
each other.)

tsing0

{tj}

tsing1

{tj}
t1

t2

t3

Fig. 3. Figure of the steepest descent paths of (2.27) at arg η = −3π/100
and its magnification

tsing0{tj}

tsing1

{tj} t1

t2

t3

Fig. 4. Figure of the steepest descent paths of (2.27) at arg η = 3π/100
and its magnification
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As is clearly visualized in Figures 3 and 4, a change of the configuration of Γ2

occurs near arg η = 0, and consequently we have a Stokes phenomenon for ψ̂2(z, η) (or
ψ̂

(0)
2 (z, η)) as follows: Let Γj and Γ̃j (resp., ψj(z, η) and ψ̃j(z, η)) denote the steepest

descent paths passing through tj (resp., the corresponding solutions of (2.21) defined
by (2.30)) for arg η < 0 and arg η > 0, respectively. In this case the change of the
configuration of Γ2 and the corresponding Stokes phenomenon for ψ̂2(z, η) are in a
sense ‘reversed’ ones of those discussed in Section 4.1. Taking account of this character,
we first observe that Γ̃2 = Γ2 + Γ† + Γ‡, where Γ† is a path emanating from t = tsing1

and going to ∞ through t2 (i.e., homotopic to Γ2) and Γ‡ is a path homotopic to Γ1.
Note again that the branch of h(t; z, η−1) on Γ† (resp., Γ‡) differs from that on Γ2

(resp., Γ1) due to the singularity t = tsing1 . It then follows from Lemma 4.6 that

ψ̃2(z, η) = ψ2(z, η) +O
(
exp(−cη5)

)
ψ2(z, η) +O

(
exp(−cη5)

)
ψ1(z, η) (4.14)

for some constant c > 0. Since there occurs no Stokes phenomenon with ψ1(z, η) and
ψ3(z, η), we finally obtain

ψ
(0)
2 (z, η)− ψ̃(0)

2 (z, η) = O
(
exp(−cη5)

)
, ψ

(0)
j (z, η)− ψ̃(0)

j (z, η) = 0 (j = 1, 3),
(4.15)

that is, a Stokes phenomenon of exponential order 5 occurs with ψ̂
(0)
2 (z, η) near

arg η = 0.
Tracing the change of the configuration of the steepest descent paths of the integral

representation (2.25) from arg η = 0 to 2π, we thus conclude the following

Proposition 4.7. Let z = 1 + i be fixed. Then, when arg η varies from 0 to 2π, the
following three types of Stokes phenomena occur with the WKB solutions ψ̂(0)

j (z, η)
(j = 1, 2, 3) of (2.21).

(type A)
ψ

(0)
j (z, η)− ψ̃(0)

j (z, η) = O(exp(−c|η|)), (4.16)

where ψ
(0)
j (z, η) and ψ̃

(0)
j (z, η) denote the analytic realizations of ψ̂(0)

j (z, η) in the
neighboring two sectors, respectively, and c is a positive constant. This type of Stokes
phenomena occurs near





arg η = 31π/100 and 164π/100 for ψ̂(0)
1 (z, η),

arg η = 37π/100 and 62π/100 for ψ̂(0)
2 (z, η),

arg η = 132π/100 and 138π/100 for ψ̂(0)
3 (z, η).

(type B)
ψ

(0)
j (z, η)− ψ̃(0)

j (z, η) = O(exp(−c|η|5)). (4.17)

This type of Stokes phenomena occurs at arg η = kπ/5 with




k = 1, 2, 3, 4 for ψ̂(0)
1 (z, η),

k = 0, 3, 7, 8, 9 for ψ̂(0)
2 (z, η),

k = 3, 4, 5, 6, 7, 8 for ψ̂(0)
3 (z, η).
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(type C)

ψ
(0)
j (z, η)− ψ̃(0)

j (z, η) = O(exp(−c|η|8)). (4.18)

This type of Stokes phenomena occurs at arg η = (2l + 1)π/16 with





l = 0, 1, 3, 4, 6, 9, 10, 11, 12, 15 for ψ̂(0)
1 (z, η),

l = 0, 1, 2, 3, 4, 7, 8, 9, 10, 15 for ψ̂(0)
2 (z, η),

l = 0, 3, 4, 5, 6, 13, 14, 15 for ψ̂(0)
3 (z, η).

For the change of the configuration of steepest descent paths see Appendix B,
where figures of steepest descent paths of (2.25) or, equivalently, (2.27) together with
their magnified ones are given for several different values of arg η ∈ [0, 2π). Note that
Stokes phenomena of type A are the ones to which both singular points t = tsing0 and
t = tsing1 are irrelevant, while Stokes phenomena of type B (resp., type C) are the
ones to which the singular point t = tsing1 (resp., t = tsing0 ) is relevant.

Remark 4.8. In view of Lemma 4.6, since a Stokes phenomenon of type B is the
one to which the singular point t = tsing1 is relevant, we find that it occurs only when
Im η5 = 0, that is, when the top order part (with respect to η) of 2πi multiple of the
residue of η(∂h/∂t) at t = tsing1 becomes real. This explains why Stokes phenomena
of type B occur only when arg η is an integral multiple of π/5 in Proposition 4.7.
Similarly, a Stokes phenomenon of type C occurs only when Im iη8 = 0, i.e., when
arg η = (2l + 1)π/16 for some integer l.

Remark 4.9. In parallel to the case of Proposition 4.2, a proposition similar to
Proposition 4.7 and consequently Theorem 2.2 can be considered to hold for every
z ∈ C (except for exact values of arg η where Stokes phenomena occur, cf. Remark 4.5).

5. PROOF OF THE MAIN THEOREMS

In the preceding section we clarified the structure of Stokes phenomena for WKB solu-
tions of Equations (2.1) and (2.21). Making use of this structure of Stokes phenomena
and Proposition 3.5, we prove the multisummability of WKB solutions of (2.1) and
(2.21) in this section.
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5.1. PROOF OF THEOREM 2.1

We first prove the (4, 1)-multisummability of WKB solutions of (2.1).
Let d be any direction where no Stokes phenomenon occurs with the WKB solu-

tions ψ̂(0)
± (z, η) of Eq. (2.1). For the sake of definiteness, we here take, for example,

d = 7π/16 and prove the (4, 1)-multisummability of ψ̂(0)
− (z, η) in the direction d.

In this case we have k1 = 4, k2 = 1, q = 2 and

d ∈ I1 =
[ 5

16
π,

9

16
π
]
⊂ I2 =

[
− 1

16
π,

15

16
π
]
. (5.1)

We set ϕ0 = d−π = −9π/16 and put (i) all the directions where a Stokes phenomenon
occurs (we call such directions “singular directions” in what follows), (ii) boundaries
of Iµ (µ = 1, 2), and (iii) ϕ0, ϕ0 + 2π in the order of magnitude from ϕ0 as follows:

φ0 = ϕ0 = − 9

16
π, φ1 = −1

2
π, φ2 = −3

8
π, φ3 = −1

4
π, φ4 = − 1

16
π,

φ5 = 0, φ6 =
1

4
π, φ7 =

5

16
π, φ8 =

1

2
π, φ9 =

9

16
π, φ10 =

5

8
π,

φ11 =
3

4
π, φ12 =

15

16
π, φ13 = π, φ14 =

5

4
π, φ15 = ϕ0 + 2π =

23

16
π,

In this notation I1 = [φ7, φ9] and I2 = [φ4, φ12]. We also express the Stokes phenomena
for ψ̂(0)

± at the direction φk in the following way:

ψ
(0)
∗ − ψ̃(0)

∗ =
∑

∗′=±
ck(∗, ∗′;α)ψ̃

(0)
∗′ (∗ = ±), (5.2)

or
ψ

(0)
∗  ψ

(0)
∗ +

∑

∗′=±
ck(∗, ∗′;α)ψ

(0)
∗′ , (5.3)

which means ψ(0)
∗ for arg η < φk is analytically continued to the right-hand side of

(5.3) for arg η > φk. Here ck(∗, ∗′;α) is a constant (i.e., independent of z) satisfying

ck(∗, ∗′;α) = O(exp(−c|η|α)). (5.4)

Note that, if the Stokes phenomena in question are of type A (resp., type B), then
α = 1 (resp., α = 4).

We now define f(η; θ) for ϕ0 ≤ θ ≤ ϕ0 + 2π. First, we define f(η; θ) for θ ∈
[ϕ0, ϕ0 + 2π] \ {φk}0≤k≤15.

(In I1) In I1, i.e., in [φ7, φ9], taking all the Stokes phenomena into account, we
define f(η; θ) as follows:

f(η; θ) =

{
ψ

(0)
− (z, η; θ) for φ7 < θ < φ8,
ψ

(0)
− (z, η; θ) + c8(−,−; 4)ψ

(0)
− (z, η; θ) for φ8 < θ < φ9,

(5.5)
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where ψ
(0)
± (z, η; θ) designates ψ

(0)
± (z, η) defined by the integral along Γ± when

arg η = θ. Note that at arg η = φ8 we have the following Stokes phenomenon of type
B for ψ̂(0)

− .
ψ

(0)
−  ψ

(0)
− + c8(−,−; 4)ψ

(0)
− . (5.6)

(In I2 \ I1) On ∂I1 we neglect terms of order O(exp(−c|η|4)) and in I2 \ I1 we take
only Stokes phenomena of type A into account. To be more specific, we define f(η; θ)
for θ ∈ [φ4, φ7] by

f(η; θ) = ψ
(0)
− (z, η; θ) for φ4 < θ < φ7, (5.7)

and for θ ∈ [φ9, φ12] by

f(η; θ) =

{
ψ

(0)
− (z, η; θ) for φ9 < θ < φ10,
ψ

(0)
− (z, η; θ) + c10(−,+; 1)ψ

(0)
+ (z, η; θ) for φ10 < θ < φ12.

(5.8)

(In [ϕ0, ϕ0 + 2π] \ I2) On ∂I2 we neglect terms of order O(exp(−c|η|)) and in
[ϕ0, ϕ0 + 2π]\ I2 we ignore all the Stokes phenomena, that is, we define f(η; θ) simply
by

f(η; θ) = ψ
(0)
− (z, η; θ) for φ0 < θ < φ4 and φ12 < θ < φ15. (5.9)

Finally, we define f(η; θ) for θ = φk by the following:

f(η;φk) =

{
f(η;φk + δ) when ϕ0 ≤ φk < d,
f(η;φk − δ) when d < φk ≤ ϕ0 + 2π,

(5.10)

where δ is a sufficiently small positive number.

Note that, as the number of singular directions is finite, by taking sufficiently small
ε and ρ we may assume that f(η; θ) is analytic in a sector S(θ, ε, ρ). Further, we may
also assume that every S(θ, ε, ρ) contains at most one φk. Hence the conditions (i)
and (ii) in Proposition 3.5 are satisfied. By the above definition of f(η; θ) conditions
(iv) and (v) also hold. Thus it suffices to check condition (iii).

(I) (When θ1, θ2 ∈ I1.) Since all the Stokes phenomena are taken into account in I1,
f(η; θ1) = f(η; θ2) trivially holds.

(II) (When θ1, θ2 ∈ I2 and one of θ1 and θ2 does not belong to I1.) Discontinuity for
f(η; θ) is observed only at arg η = φ5, φ6, φ9 and φ11.

First, since Stokes phenomena at arg η = φ5, φ6 are of type B, condition (3.10)′ is
satisfied near arg η = φ5, φ6.

Next, as φ9 is a boundary point of I1 and no Stokes phenomenon occurs there, at
arg η = φ9 we have

f(η;φ9 + δ)− f(η;φ9 − δ) (5.11)

= ψ
(0)
− (z, η;φ9 + δ)− (ψ

(0)
− (z, η;φ9 − δ) + c8(−,−; 4)ψ

(0)
− (z, η;φ9 − δ))

= −c8(−,−; 4)ψ
(0)
− (z, η;φ9 − δ) = O(exp(−c|η|4))
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for a small positive constant δ. Note that, since the term c8ψ
(0)
− appears in the Stokes

phenomenon at arg η = φ8, it precisely satisfies

c8ψ
(0)
− = O(exp(−c(ηe−iφ8)4)). (5.12)

Hence (5.11) is valid at arg η = φ9 in view of |φ9 − φ8| < π/8 = π/(2k1).
Finally, at φ11 we have

f(η;φ11 + δ)− f(η;φ11 − δ) (5.13)

= (ψ
(0)
− (z, η;φ11 + δ) + c10(−,+; 1)ψ

(0)
+ (z, η;φ11 + δ))

− (ψ
(0)
− (z, η;φ11 − δ) + c10(−,+; 1)ψ

(0)
+ (z, η;φ11 − δ))

= ψ
(0)
− (z, η;φ11 − δ)− ψ(0)

− (z, η;φ11 + δ) = O(exp(−c|η|4)),

since a Stokes phenomenon for ψ(0)
− at arg η = φ11 is of type B and no Stokes phe-

nomenon occurs with ψ(0)
+ there.

(III) (When θ1, θ2 ∈ [ϕ0, ϕ0 + 2π] and one of θ1 and θ2 does not belong to I2.) Dis-
continuity for f(η; θ) is observed only at arg η = φ12, φ13 and φ14.

At φ12, by an argument similar to the one at φ9, we have

f(η;φ12 + δ)− f(η;φ12 − δ) (5.14)

= ψ
(0)
− (z, η;φ12 + δ)− (ψ

(0)
− (z, η;φ12 − δ) + c10(−,+; 1)ψ

(0)
+ (z, η;φ12 − δ))

= −c10(−,+; 1)ψ
(0)
+ (z, η;φ12 − δ) = O(exp(−c|η|)).

Note again that, since the term c10ψ
(0)
+ appears in the Stokes phenomenon at arg η =

φ10, it satisfies
c10ψ

(0)
+ = O(exp(−c(ηe−iφ10))) (5.15)

and hence (5.14) is valid at arg η = φ12 in view of |φ12 − φ10| < π/2 = π/(2k2).
Since Stokes phenomena at arg η = φ13, φ14 are of type B, the required condition

is satisfied also near arg η = φ13, φ14.

We have thus checked all conditions in Proposition 3.5. Therefore the
(4, 1)-multisummability of the WKB solution ψ̂

(0)
− of Equation (2.1) is now verified

thanks to Proposition 3.5 (cf. Remark 3.6).

5.2. PROOF OF THEOREM 2.2

Theorem 2.2 is proved by a similar argument as in the preceding subsection. We
explain an outline of the proof of Theorem 2.2 in this subsection.

Let d be any direction where no Stokes phenomenon occurs with the WKB so-
lutions ψ̂(0)

j (z, η) (j = 1, 2, 3) of Eq. (2.21). Here we take d = 7π/32 and prove the
(8, 5, 1)-multisummability of ψ̂(0)

1 in the direction d.



On the multisummability of WKB solutions. . . 795

In this case we have k1 = 8, k2 = 5, k3 = 1, q = 3 and

d ∈ I1 =
[ 5

32
π,

9

32
π
]
⊂ I2 =

[ 19

160
π,

51

160
π
]
⊂ I3 =

[
− 9

32
π,

23

32
π
]
. (5.16)

We set ϕ0 = d − π = −25π/32 and again put all the singular directions, boundaries
of Iµ (µ = 1, 2, 3), ϕ0 and ϕ0 + 2π in the order of magnitude from ϕ0 so that

φ0 = ϕ0, φ19 < d < φ20, φ39 = ϕ0 + 2π,

I1 = [φ17, φ20], I2 = [φ16, φ23], I3 = [φ10, φ31].
(5.17)

Similarly to (5.3), we express the Stokes phenomena for ψ̂(0)
j (j = 1, 2, 3) at the

direction φk as
ψ

(0)
j  ψ

(0)
j +

∑

1≤j′≤3

ck(j, j′;α)ψ
(0)
j′ , (5.18)

where ck(j, j′;α) is a constant satisfying

ck(j, j′;α) = O(exp(−c|η|α)). (5.19)

If Stokes phenomena in question are of type A (resp., type B, type C), then α = 1
(resp., α = 5, α = 8).

We then define f(η; θ) for ϕ0 ≤ θ ≤ ϕ0 + 2π as follows:

(In I1) In I1, taking all the Stokes phenomena into account, we define

f(η; θ) = ψ
(0)
1 (z, η; θ) + c18(1, 2; 8)ψ

(0)
2 (z, η; θ) (5.20)

+ c19(1, 1; 5)
(
ψ

(0)
1 (z, η; θ) + c18(1, 2; 8)ψ

(0)
2 (z, η; θ)

)

+ c19(1, 2; 5)
(
ψ

(0)
2 (z, η; θ) + c18(2, 2; 8)ψ

(0)
2 (z, η; θ)

)

for φ17 < θ < φ18,

f(η; θ) = ψ
(0)
1 (z, η; θ) + c19(1, 1; 5)ψ

(0)
1 (z, η; θ) + c19(1, 2; 5)ψ

(0)
2 (z, η; θ) (5.21)

for φ18 < θ < φ19, and
f(η; θ) = ψ

(0)
1 (z, η; θ) (5.22)

for φ19 < θ < φ20.

(In I2 \ I1) On ∂I1 we neglect terms of order O(exp(−c|η|8)) and in I2 \I1, ignoring
Stokes phenomena of type C, we take account of Stokes phenomena of type A and
type B only. That is, we define f(η; θ) for θ ∈ [φ16, φ17] by

f(η; θ) = ψ
(0)
1 (z, η; θ) + c19(1, 1; 5)ψ

(0)
1 (z, η; θ) + c19(1, 2; 5)ψ

(0)
2 (z, η; θ), (5.23)

and for θ ∈ [φ20, φ23] by

f(η; θ) =

{
ψ

(0)
1 (z, η; θ) for φ20 < θ < φ21,

ψ
(0)
1 (z, η; θ) + c21(1, 3; 1)ψ

(0)
3 (z, η; θ) for φ21 < θ < φ23.

(5.24)
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(In I3 \ I2) On ∂I2 we neglect terms of order up to O(exp(−c|η|5)) and in I3 \ I2 we
take only Stokes phenomena of type A into account. Consequently, we define f(η; θ) by

f(η; θ) =

{
ψ

(0)
1 (z, η; θ) for φ10 < θ < φ16,

ψ
(0)
1 (z, η; θ) + c21(1, 3; 1)ψ

(0)
3 (z, η; θ) for φ23 < θ < φ31.

(5.25)

(In [ϕ0, ϕ0 + 2π] \ I3) On ∂I3 we neglect terms of order up to O(exp(−c|η|)) and
in [ϕ0, ϕ0 + 2π] \ I2 we ignore all the Stokes phenomena, that is, we define f(η; θ)
simply by

f(η; θ) = ψ
(0)
− (z, η; θ) for φ0 < θ < φ10 and φ31 < θ < φ39. (5.26)

Finally, we define f(η; θ) for θ = φk by the following:

f(η;φk) =

{
f(η;φk + δ) when ϕ0 ≤ φk < d,
f(η;φk − δ) when d < φk ≤ ϕ0 + 2π.

(5.27)

Defining f(η; θ) as above, we can confirm conditions (i), (ii), (iv) and (v) in Propo-
sition 3.5 by taking sufficiently small ε and ρ. Furthermore, we can check condition
(iii) also by similar arguments as in the preceding subsection. As the arguments are
completely similar, we omit them here.
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APPENDIX

A. FIGURES OF STEEPEST DESCENT PATHS FOR EQ. (2.1)

In Appendix A we present figures of steepest descent paths for Eq. (2.1), that is, those
of (2.9), for several different values of arg η ∈ [0, 2π). (Here we take |η| = 10.)



On the multisummability of WKB solutions. . . 797

arg η = 6π/100 arg η = 19π/100 arg η = 31π/100 arg η = 44π/100

arg η = 56π/100 arg η = 69π/100 arg η = 81π/100 arg η = 94π/100

arg η = 106π/100 arg η = 119π/100 arg η = 131π/100 arg η = 144π/100

arg η = 156π/100 arg η = 169π/100 arg η = 181π/100 arg η = 194π/100

B. FIGURES OF STEEPEST DESCENT PATHS FOR EQ. (2.21)

In Appendix B we show figures of steepest descent paths for Eq. (2.21), that is, those
of (2.25) or equivalently (2.27), for several different values of arg η ∈ [0, 2π). (Here
we take |η| = 20.) To distinguish the saddle points tj (j = 1, 2, 3) and tsing1 , we also
present magnified ones: Figures at the top are original ones of (2.27), those in the
middle are magnified ones and those at the bottom are more magnified ones.
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arg η = 3π/100 arg η = 12π/100 arg η = 19π/100 arg η = 25π/100

arg η = 31π/100 arg η = 34π/100 arg η = 38π/100 arg η = 42π/100
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arg η = 50π/100 arg η = 58π/100 arg η = 61π/100 arg η = 65π/100

arg η = 74π/100 arg η = 81π/100 arg η = 87π/100 arg η = 97π/100
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arg η = 103π/100 arg η = 112π/100 arg η = 119π/100 arg η = 125π/100

arg η = 132π/100 arg η = 135π/100 arg η = 139π/100 arg η = 142π/100
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arg η = 150π/100 arg η = 158π/100 arg η = 162π/100 arg η = 166π/100

arg η = 174π/100 arg η = 181π/100 arg η = 187π/100 arg η = 197π/100
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