PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The frequency of the zeros of some differential polynomials

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let ρp(ƒ) and σp(ƒ) denote respectively the iterated p-order and the iterated p-type of an entire function ƒ. In this paper, we study the iterated order and the fixed points of some differential polynomials generated by solutions of the differential equation f''+A1(z)f'+A0(z)f=0 where A1(z), A0(z) are entire functions of finite iterated p-order such that ρp(A1) = ρp(A0) = ρ(0< ρ <+∞) and σp(A1)< σp(A0) =σ(0< σ <+∞).
Wydawca
Rocznik
Strony
75--86
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B. P. 227 Mostaganem, Algeria
Bibliografia
  • [1] S. Bank, A general theorem concerning the growth of solutions of first-order algebraic differential equations, Compos. Math. 25 (1972), 61–70.
  • [2] B. Belaïdi, Oscillation of fixed points of solutions of some linear differ ential equations, Acta. Math. Univ. Comenian. 77(2) (2008), 263–269.
  • [3] B. Belaïdi, Growth and oscillation of solutions to linear differential equations with entire coefficients having the same order, Electron. J. Differential Equations 70 (2009), 1–10.
  • [4] L. G. Bernal, On growth k-order of solutions of a complex homogeneous linear differential equations, Proc. Amer. Math. Soc. 101 (1987), 317–322.
  • [5] T. B. Cao, Z. X. Chen, X. M. Zheng, J. Tu, On the iterated order of meromorphic solutions of higher order linear differential equations, Ann. Differential Equations 21(2) (2005), 111–122.
  • [6] T. B. Cao, H. X. Yi, On the complex oscillation of higher order linear differential equations with meromorphic functions, J. Systems Sci. Complex. 20(1) (2007), 135–148.
  • [7] T. B. Cao, J. F. Xu, Z. X. Chen, On the meromorphic solutions of linear differential equations on the complex plane, J. Math. Anal. Appl. 364(1) (2010), 130–142.
  • [8] Z. X. Chen, The fixed points and hyper-order of solutions of second order complex differential equations, Acta Math. Sci. (Chinese) 20(3) (2000), 425–432 (in Chinese).
  • [9] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
  • [10] L. Kinnunen, Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math. 22(4) (1998), 385–405.
  • [11] I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, New York, 1993.
  • [12] I. Laine, J. Rieppo, Differential polynomials generated by linear differential equations, Complex Variables Theory Appl. 49(12) (2004), 897–911.
  • [13] B. Ya. Levin, Lectures on Entire Functions. In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko. Translated from the Russian manuscript by Tkachenko. Translations of Mathematical Monographs, 150. American Mathematical Society, Providence, RI, 1996.
  • [14] M. S. Liu, X. M. Zhang, Fixed points of meromorphic solutions of higher order linear differential equations, Ann. Acad. Sci. Fenn. Ser. A I Math. 31 (2006), 191–211.
  • [15] R. Nevanlinna, Eindeutige analytische Funktionen, Zweite Auflage. Reprint. Die Grundlehren der mathematischen Wissenschaften, Band 46. Springer-Verlag, Berlin-New York, 1974.
  • [16] J. Wang, H. X. Yi, Fixed points and hyper order of differential polynomials generated by solutions of differential equation, Complex Variables Theory Appl. 48(1) (2003), 83–94.
  • [17] Q. T. Zhang, C. C. Yang, The Fixed Points and Resolution Theory of Meromorphic Functions, Beijing University Press, Beijing, 1988 (in Chinese).
  • [18] C. C. Yang, H. X. Yi, Uniqueness Theory of Meromorphic Functions, Mathematics and its Application, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f71f046-0965-4b97-8742-acc663c1d359
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.