PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Narrow transmission mode in one-dimensional symmetric defective photonic crystal containing metamaterial and high Tc superconductor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We theoretically investigate the properties of narrow transmission mode (defect mode) within the reflection band in one-dimensional symmetric defective photonic crystal containing double negative metamaterial and high temperature superconductors. The transmittance spectrum of the proposed structure is obtained by using the characteristic or transfer matrix method. The results show that by increasing the thickness of air defect, transmission mode shifts towards the lower frequency side. But when the thickness of a superconductor layer is increased, transmission mode shifts towards the high frequency side. Further, the effect of temperature variation of superconducting defect on the defect mode has been investigated and found that when the temperature of superconducting layer increases the frequency of defect mode is red shifted. The shift in frequency has smaller value in the lower temperature region than in the higher temperature region, even if the change in temperature is same. Finally we have discussed the effect of variation of thickness on the defect mode by using the double negative metamaterial as defect layer in place of superconductor layer. The result shows that we get two modes for smaller thickness of double negative layer but only a single mode for larger thickness.
Czasopismo
Rocznik
Strony
37--50
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
  • Department of Physics, Amity Institute of Applied Sciences, Amity University Uttar Pradesh,Noida-201301, India
  • Department of Physics, Marvdasht Branch, Islamic Azad Universiy, Marvdasht, Iran
  • Department of Physics and Astronomy, Curtin University, Perth, WA 6102, Australia
Bibliografia
  • [1] YABLONOVITCH E., Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters 58(20), 1987, pp. 2059–2062, DOI: 10.1103/PhysRevLett.58.2059.
  • [2] JOHN S., Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58(23), 1987, pp. 2486–2489, DOI: 10.1103/PhysRevLett.58.2486.
  • [3] WEISS S.M., HAURYLAU M., FAUCHET P.M., Tunable photonic bandgap structures for optical interconnects, Optical Materials 27(5), 2005, pp. 740–744, DOI: 10.1016/j.optmat.2004.08.007.
  • [4] FINK Y., WINN J.N., SHANHUI FAN, CHIPING CHEN, MICHEL J., JOANNOPOULOS J.D., THOMAS E.L., A dielectric omnidirectional reflector, Science 282(5394), 1998, pp. 1679–1682, DOI: 10.1126/science.282.5394.1679.
  • [5] MEKIS A., CHEN J.C., KURLAND I., SHANHUI FAN, VILLENEUVE P.R., JOANNOPOULOS J.D., High transmission through sharp bends in photonic crystal waveguides, Physical Review Letters 77(18), 1996, pp. 3787–1390, DOI: 10.1103/PhysRevLett.77.3787.
  • [6] CHIGRIN D.N., LAVRINENKO A.V., YAROTSKY D.A., GAPONENKO S.V., Observation of total omnidirectional reflection from a one-dimensional dielectric lattice, Applied Physics A 68(1), 1999, pp. 25–28, DOI: 10.1007/s003390050849.
  • [7] SRIVASTAVA S.K., OJHA S.P., Broadband optical reflector based on Si/SiO2 one-dimensional graded photonic crystal structure, Journal of Modern Optics 56(1), 2009, pp. 33–40, DOI: 10.1080/ 09500340802428330.
  • [8] NODA S., YOKOYAMA M., IMADA M., CHUTINAN A., MOCHIZUKI M., Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design, Science 293(5532), 2001, pp. 1123–1125, DOI: 10.1126/science.1061738.
  • [9] VESELAGO V.G., The electrodynamics of substances with simultaneously negative values of ε and μ, Soviet Physics Uspekhi 10(4), 1968, pp. 509–514, DOI: 10.1070/PU1968v010n04ABEH003699.
  • [10] PENDRY J.B., Negative refraction makes a perfect lens, Physical Review Letters 85(18), 2000, pp. 3966 –3369, DOI: 10.1103/PhysRevLett.85.3966.
  • [11] PENDRY J.B., Light run backward in time, Physics World 13, 2000, pp. 27–29.
  • [12] SMITH D.R., PADILLA W.J., VIER D.C., NEMAT-NASSER S.C., SCHULTZ S., Composite medium with simultaneously negative permeability and permittivity, Physical Review Letters 84(18), 2000, pp. 4184 –4187, DOI: 10.1103/PhysRevLett.84.4184.
  • [13] SHELBY R.A., SMITH D.R., SCHULTZ S., Experimental verification of a negative index of refraction, Science 292(5514), 2001, pp. 77–79, DOI: 10.1126/science.1058847.
  • [14] JENSEN LI, LEI ZHOU, CHAN C.T., SHENG P., Photonic band gap from a stack of positive and negative index materials, Physical Review Letters 90(8), 2003, article ID 083901, DOI: 10.1103/PhysRevLett.90.083901.
  • [15] SRIVASTAVA S.K., AGHAJAMALI A., Study of optical reflectance properties in 1D annular photonic crystal containing double negative (DNG) metamaterials, Physica B: Condensed Matter 489, 2016, pp. 67–72, DOI: 10.1016/j.physb.2016.01.036.
  • [16] SRIVASTAVA S.K., AGHAJAMALI A., Analysis of reflectance properties in 1D photonic crystal containing metamaterial and high-temperature superconductor, Journal of Superconductivity and Novel Magnetism 30(2), 2017, pp. 343–351, DOI: 10.1007/s10948-016-3788-4.
  • [17] SHADRIVOV I.V., SUKHORUKOV A.A., KIVSHAR Y.S., Beam shaping by a periodic structure with negative refraction, Applied Physics Letters 82(22), 2003, pp. 3820–3822, DOI: 10.1063/1.1579849.
  • [18] RAMAKRISHNA S.A., Physics of negative refractive index materials, Reports on Progress in Physics 68(2), 2005, pp. 449–521, DOI: 10.1088/0034-4885/68/2/R06.
  • [19] PARIMI P.V., LU W.T., VODO P., SRIDHAR S., Photonic crystals: Imaging by flat lens using negative refraction, Nature 426, 2003, p. 404, DOI: 10.1038/426404a.
  • [20] HAITAO JIANG, HONG CHEN, HONGQIANG LI, YEWEN ZHANG, JIAN ZI, SHIYAO ZHU, Properties of one-dimensional photonic crystals containing single-negative materials, Physical Review E 69(6), 2004, article ID 066607, DOI: 10.1103/PhysRevE.69.066607.
  • [21] LI-GANG WANG, HONG CHEN, SHI-YAO ZHU, Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials, Physical Review B 70(24), 2004, article ID 245102, DOI: 10.1103/PhysRevB.70.245102.
  • [22] HENG-TUNG HSU, KUAN-CHUNG TING, TZONG-JER YANG, CHIEN-JANG WU, Investigation of photonic band gap in a one-dimensional lossy DNG/DPS photonic crystal, Solid State Communications 150(14), 2010, pp. 644–647, DOI: 10.1016/j.ssc.2009.12.027.
  • [23] MISHRA A., AWASTHI S.K., SRIVASTAVA S.K., MALAVIYA U., OJHA S.P., Tunable and omnidirectional filters based on one-dimensional photonic crystals composed of single-negative materials, Journal of the Optical Society of America B 28(6), 2011, pp. 1416–1422, DOI: 10.1364/JOSAB.28.001416.
  • [24] AGHAJAMALI A., ALAMFARD T., BARATI M., Effects of loss factors on zero permeability and zero permittivity gaps in 1D photonic crystal containing DNG materials, Physica B: Condensed Matter 454, 2014, pp. 170–174, DOI: 10.1016/j.physb.2014.07.067.
  • [25] XIN-HUA DENG, NIAN-HUA LIU, Polarization dependent angle fitters based on one-dimensional photonic crystals using mu-negative materials, Journal of Modern Optics 56(4), 2009, pp. 482–486, DOI: 10.1080/09500340802471843.
  • [26] TAKEDA H., YOSHINO K., Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors, Physical Review B 67(24), 2003, article ID 245109, DOI: 10.1103/PhysRevB.67.245109.
  • [27] OOI C.H.R., YEUNG T.C.A., KAM C.H., LIM T.K., Photonic band gap in a superconductor-dielectric superlattice, Physical Review B 61(9), 2000, pp. 5920–5923, DOI: 10.1103/PhysRevB.61.5920.
  • [28] EL-NAGGAR S.A., ELSAYED H.A., ALY A.H., Maximization of photonic bandgaps in two-dimensional superconductor photonic crystals, Journal of Superconductivity and Novel Magnetism 27(7), 2014, pp. 1615–1621, DOI: 10.1007/s10948-014-2500-9.
  • [29] BERMAN O.L., LOZOVIK Y.E., EIDERMAN S.L., COALSON R.D., Superconducting photonic crystals: numerical calculations of the band structure, Physical Review B 74(9), 2006, article ID 092505, DOI: 10.1103/PhysRevB.74.092505.
  • [30] SRIVASTAVA S.K., Study of defect modes in 1D photonic crystal structure containing high and low Tc superconductor as defect layer, Journal of Superconductivity and Novel Magnetism 27(1), 2014, pp. 101–114, DOI: 10.1007/s10948-013-2274-5.
  • [31] YAN-BIN CHEN, CHAO ZHANG, YONG-YUAN ZHU, SHI-NING ZHU, NAI-BEN MING, Tunable photonic crystals with superconductor constituents, Materials Letters 55(1–2), 2002, pp. 12–16, DOI: 10.1016/ S0167-577X(01)00610-3.
  • [32] ALY A.H., SANG-WAN RYU, HENG-TUNG HSU, CHIEN-JANG WU, THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice, Materials Chemistry and Physics 113(1), 2009, pp. 382–384, DOI: 10.1016/j.matchemphys.2008.07.123.
  • [33] SRIVASTAVA S.K., UPADHYAY M., AWASTHI S.K., OJHA S.P., Tunable reflection bands and defect modes in one-dimensional tilted photonic crystal structure, Optics and Photonics Journal 2(3A), 2012, pp. 230–236, DOI: 10.4236/opj.2012.223035.
  • [34] SUTHAR B., BHARGAVA A., Temperature-dependent tunable photonic channel filter, IEEE Photonics Technology Letters 24(5), 2012, pp. 338–340, DOI: 10.1109/LPT.2011.2178401.
  • [35] HUI-CHUAN HUNG, CHIEN-JANG WU, SHOOU-JINN CHANG, Terahertz temperature-dependent defect mode in a semiconductor-dielectric photonic crystal, Journal of Applied Physics 110(9), 2011, article ID 093110, DOI: 10.1063/1.3660230.
  • [36] SKOROMETS V., NĚMEC H., KADLEC C., FATTAKHOVA-ROHLFING D., KUŽEL P., Electric-filed-tunable defect mode in one-dimensional photonic crystal operating in the terahertz ragne, Applied Physics Letters 102(24), 2013, article ID 241106, DOI: 10.1063/1.4809821.
  • [37] SRIVASTAVA S.K., Electrically controlled reflection band and tunable defect modes in one-dimensional photonic crystal by using potassium titanyl phosphate (KTP) crystal, Journal of Nanoelectronics and Optoelectronics 11(3), 2016, pp. 284–289, DOI: 10.1166/jno.2016.1895.
  • [38] HUIPING TIAN, JIAN ZI, One-dimensional tunable photonic crystals by means of external magnetic fields, Optics Communications 252(4–6), 2005, pp. 321–328, DOI: 10.1016/j.optcom.2005.04.022.
  • [39] MCPHAIL D., STRAUB M., MIN GU, Optical tuning of three-dimensional photonic crystals fabricated by femtosecond direct writing, Applied Physics Letters 87(9), 2005, article ID 091117, DOI: 10.1063/1.2037862.
  • [40] CHIEN-JANG WU, MEI-SOONG CHEN, TZONG-JER YANG, Photonic band structure for a superconductor -dielectric superlattice, Physica C: Superconductivity 432(3–4), 2005, pp. 113–139, DOI: 10.1016/ j.physc.2005.07.019.
  • [41] TINKHAM M., Introduction to Superconductivity, 2nd Ed., McGraw-Hill, New York 1996.
  • [42] YEH P., Optical Waves in Layered Media, Wiley, New York 1988.
  • [43] BORN M., WOLF E., Principles of Optics, Cambridge University Press, Cambridge 1998
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f6dc38c-c566-4a9c-a2f5-5f9d63912ef9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.