PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimized null steering in compact bowtie antenna array using simulation driven Taguchi method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ever rising increase in number of wireless services has prompted the use of spatial multiplexing through null steering. Various algorithms provide electronic control of antenna array pattern. Simulation-driven technique further introduces correction in array factor to account for array geometry. Taguchi method is used here to combat interference in practical antenna arrays of non-isotropic elements, by incorporating the effect of antenna element pattern on array pattern control in the optimization algorithm. 4-element rectangular and bowtie patch antenna arrays are considered to validate the effectiveness of Taguchi optimization. The difference in the computed excitations and accuracy of null steering confirms the dependence of beam pattern on element factor and hence eliminates the need for extra computations performed by conventional algorithms based on array factor correction. Taguchi method employs an orthogonal array and converges rapidly to the desired radiation pattern in 25 iterations, thus signifying it to be computationally cost-effective. A higher gain and a significant reduction in side lobe level (SLL) was obtained for the bowtie array. Further, due to feed along parallel edges of the patch, the radiating edges being slanted to form the bow shape results in a significant reduction in the area as compared with the rectangular patch designed to resonate at the same frequency.
Rocznik
Strony
3--17
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr., wzory
Twórcy
  • Sant Longowal Institute of Engineering and Technology, Electronics and Communication Engineering Department, Longowal, Punjab, India-148106
  • Sant Longowal Institute of Engineering and Technology, Electronics and Communication Engineering Department, Longowal, Punjab, India-148106
Bibliografia
  • [1] Berezdivin, R., Breinig, R., Topp, R. (2002). Next-generation wireless communications concepts and technologies. IEEE Communications Magazine, 40(3), 108-116.
  • [2] Guney, K., Basbug, S. (2008). Interference suppression of linear antenna arrays by amplitude-only control using a bacterial foraging algorithm. Progress In Electromagnetics Research, 79, 475-497.
  • [3] Guney, K., Durmus, A. (2015). Pattern nulling of linear antenna arrays using backtracking search optimization algorithm. International Journal of Antennas and Propagation, 1-10.
  • [4] Liang, S., Sun, G. (2017). Sidelobe-level suppression for linear and circular antenna arrays via the cuckoo search–chicken swarm optimization algorithm. IET Microwaves, Antennas and Propagation, 11(2), 209-218.
  • [5] Saxena, P., Kothari, A. (2016). Optimal pattern synthesis of linear antenna array using grey wolf optimization algorithm. International Journal of Antennas and Propagation, 1-11.
  • [6] Sun, G., Liu, Y., Li, H., Liang, S., Wang, A., Li, B. (2018). An antenna array side lobe level reduction approach through invasive weed optimization. International Journal of Antennas and Propagation, 1-16.
  • [7] Recioui, A., Azrar, A., Bentarzi, H., Dehmas, M., Challal, M. (2008). Synthesis of linear arrays with sidelobe level reduction constraint using genetic algorithms. International Journal of Microwave and Optical Technology, 3(5), 524-530.
  • [8] Koziel, S., Ogurtsov, S. (2015). Rapid design of microstrip antenna arrays by means of surrogate-based optimization. IET Microwaves Antennas & Propagation, 9(5), 463-471.
  • [9] Koziel, S., Ogurtsov, S., Bekasiewicz, A. (2016). Suppressing sidelobes of linear phased array of microstrip antennas with simulation-based optimization. Metrol. Meas. Syst., 23(2), 193-203.
  • [10] Koziel, S., Bekasiewicz, A. (2017). Rapid Design Optimization of Multi-Band Antennasby Means of Response Features. Metrol. Meas. Syst., 24(2), 337-346.
  • [11] Babayigit, B., Senyigit, E. (2017). Design optimization of circular antenna arrays using taguchi method. Neural Computing & Applications, 28(6), 1443-1452.
  • [12] Bruintjes, T.M., Kokkeler, A.B.J., Karagiannis, G., Smit, G.J.M. (2015). Shaped pattern synthesis for equispaced linear arrays with non-isotropic antennas. Proc. IEEE 9th European Conference on Antennas and Propagation, Lisbon, Portugal, 1-5.
  • [13] Guney, K., Onay, M. (2007). Amplitude-only pattern nulling of linear antenna arrays with the use of bees algorithm. Progress In Electromagnetics Research, 70, 21-36.
  • [14] Mohammed, J.R., Sayidmarie, K.H. (2018). Sensitivity of the adaptive nulling to random errors in amplitude and phase excitations in array elements. International Journal of Telecommunication, Electronics, and Computer Engineering, 10(1), 51-56.
  • [15] Simons, R.N. (2001). Coplanar waveguide circuits, components and systems. New York: John Wiley & Sons.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f6ac4d5-ca5d-4d78-b5ab-fd4e8e939f93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.