ADAM ROTKEGEL^{1,2}, ZENON ZIOBROWSKI¹

POCHŁANIANIE DITLENKU WĘGLA W KOLUMNIE ZRASZANEJ CIECZĄ JONOWĄ. CZĘŚĆ II – MODEL MATEMATYCZNY I WYNIKI OBLICZEŃ

¹Instytut Inżynierii Chemicznej PAN, ul. Bałtycka 5, 44-100 Gliwice ²Politechnika Opolska, Wydział Inżynierii Produkcji i Logistyki, ul. Gen. Sosnkowskiego 31, 45-272 Opole

W pracy przedstawiono model matematyczny procesu usuwania ditlenku węgla z gazów w kolumnie wypełnionej zraszanej cieczami jonowymi [Bmim][Ac] i [Emim][Ac]. Uzyskane dane doświadczalne porównano z wynikami obliczeń prowadzonych według opracowanego modelu procesu uzyskując dobrą zgodność obliczeń z danymi eksperymentalnymi.

Słowa kluczowe: absorpcja CO2, kolumna wypełniona, ciecze jonowe.

The mathematical model of carbon dioxide removal from gases in a packed column using ionic liquids [Bmim][Ac] and [Emim][Ac] was presented. Experimental data obtained in previous work was compared with calculations results carried out using developed mathematical model of the process with good agreement with experimental data.

Keywords: CO₂ absorption, packed column, ionic liquids.

1. MODEL MATEMATYCZNY PROCESU

Ciecze jonowe zawierające anion octanowy, takie jak [Emim][Ac] czy [Bmim][Ac] są bardzo obiecujące jako absorbent dwutlenku węgla, głównie ze względu na dominujący charakter reakcji chemicznej [1].

Sugerowany mechanizm reakcji z grupą karboksylową zaproponowano w pracy Marginna [2]. Anion octanowy deprotonuje kation [Emim]⁺, [Bmim]⁺ przy drugim węglu w pierścieniu imidazolowym. Rozpuszczony CO₂ reaguje z ujemnie naładowanym atomem tworząc formację karboksylową. Dla [Bmim][Ac] mechanizm reakcji jest bardziej skomplikowany, ze względu na różnice rozpuszczalności w dwóch różnych zakresach [3,4]. Pierwszy zdominowany jest przez reakcję chemiczną CO₂ z formacją karboksylową, (ułamek molowy CO₂ mniejszy niż 0,35). W drugim zakresie reakcja zatrzymuje się i dominujący charakter wykazuje absorpcja fizyczna.

Reakcja cieczy jonowej z CO_2 może być traktowana jako reakcja pseudopierwszego rzędu w odniesieniu do CO_2 [5]. Reakcja chemiczna w fazie ciekłej powoduje zwiększenie strumienia dyfundującej masy. Opisujący to zjawisko współczynnik wzmocnienia E zdefiniowany jest jako iloraz strumienia masy w procesie absorpcji z zachodzącą reakcją chemiczną, do strumienia wymienionej masy, gdy zachodzi jedynie absorpcja fizyczna.

W modelu matematycznym do opisu ogólnego współczynnika transportu masy K_{ov} zastosowano model sumowania oporów dyfuzyjnych w fazie ciekłej i gazowej [6-8]. Uwzględniając reakcję chemiczną w fazie ciekłej wyrażoną przez współczynnik wzmocnienia E, można napisać:

$$\frac{1}{K_{OV}} = \frac{1}{k_G} + \frac{H}{Ek_L} \tag{1}$$

gdzie k_G i k_L są współczynnikami wnikania masy w fazie ciekłej i gazowej, E jest współczynnikiem wzmocnienia dla reakcji absorpcji CO₂ w fazie ciekłej, a H jest stałą Henryego zdefiniowaną jako:

$$H = \frac{y^*}{x^*} \frac{\rho_G}{\rho_L} \tag{2}$$

Iloraz ułamka molowego CO_2 w fazie gazowej i ciekłej wyraża stałą absorpcji K_a

$$K_a = \frac{y}{x^*} \tag{3}$$

Współczynnik wzmocnienia E wyznaczony z uproszczonego równania DeCourseya [9] w przypadku reakcji pseudo-pierwszego rzędu można zapisać jako:

$$E = \sqrt{1 + Ha^2} \tag{4}$$

gdzie liczba Hatty może być przedstawiona jako iloraz czasu dyfuzji i czasu reakcji

$$Ha^{2} = \frac{\tau_{diffusion}}{\tau_{reaction}}$$
(5)

Duże wartości liczby Hatty wskazują, że czas dyfuzji jest znacznie dłuższy niż czas reakcji, i stąd reakcja chemiczna zachodzi w filmie cieczy.

Głównym celem modelu matematycznego jest opisanie procesu absorpcji CO_2 z towarzyszącą reakcją chemiczną w kolumnie wypełnionej, przy wykorzystaniu współczynnika wzmocnienia E jako parametru modelu. Ponieważ w literaturze brak jest danych kinetycznych dla reakcji CO_2 z cieczami jonowymi, wartości współczynnika wzmocnienia estymowano z danych eksperymentalnych, a następnie użyto do obliczenia strumieni masowych CO_2 absorbowanych w cieczach jonowych.

Założenia do modelu matematycznego i uproszczenia:

- reakcja CO₂ z cieczami jonowymi jest rozpatrywana jako pseudo-pierwszego rzędu w odniesieniu do CO₂,
- proces zachodzi w warunkach izobarycznych i adiabatycznych,
- na powierzchni międzyfazowej zachodzi równowaga gaz-ciecz,
- zgodnie z teorią filmu opór transportu masy zachodzi jedynie w cienkiej warstwie przyściennej,
- współczynnik wzmocnienia E jest estymowany z danych doświadczalnych.

Strumień wymiany masy może być obliczony z równań bilansowych w fazie gazowej:

$$N_{CO_2} = \frac{V_G}{A} (y_{in} - y_{out}) = K_{OV} \left(\frac{\overline{y} - K_a \overline{x}}{\overline{y}_{i,m}} \right)$$
(6)

Strumień wymienianego CO₂, w fazie gazowej i ciekłej, między rdzeniem fazy a powierzchnią międzyfazowa jest taki sam i może być zapisany jako:

$$\mathbf{N}_{\mathrm{CO}_{2}} = \mathbf{E}\mathbf{k}_{\mathrm{L}} \left(\frac{\overline{\mathbf{x}} - \overline{\mathbf{x}}^{*}}{\overline{\mathbf{x}}_{\mathrm{i},\mathrm{m}}}\right) = \mathbf{k}_{\mathrm{G}} \left(\frac{\overline{\mathbf{y}}^{*} - \overline{\mathbf{y}}}{\overline{\mathbf{y}}_{\mathrm{i},\mathrm{m}}}\right)$$
(7)

Aby otrzymać profile zmiany koncentracji CO_2 w gazie i w cieczy należy rozwiązać równanie różniczkowe (8). Na każdym kroku całkowania równania wartość y_{out} była obliczana zgodnie z równaniami (6) i (7).

$$\frac{dx}{d\tau} = \frac{AN_{CO_2}}{G_L}$$
dla warunków brzegowych (8)

$$\tau = 0 \rightarrow x = 0$$

W konsekwencji zmiana stężenia CO_2 w fazie ciekłej w czasie była wyrażona zależnością:

$$\mathbf{x}(\tau) = \int_0^\tau \frac{\mathrm{AN}_{\mathrm{CO}_2}}{\mathrm{G}_{\mathrm{L}}} \mathrm{d}\,\tau \tag{9}$$

Dane równowagowe gaz-ciecz dla CO_2 i cieczy jonowych [Emim][Ac] i [Bmim][Ac] podane zostały przez Shiflett et al. [3, 10].

Współczynnik wnikania masy w fazie ciekłej był obliczany z zależności dla przepływu laminarnego i przejściowego [11]:

$$\mathbf{k}_{\rm L} = 3,76 \, \mathbf{R} e^{-1/3} \qquad \text{for} \qquad \mathbf{R} e^{2/3} \, \mathbf{S} \mathbf{c}^{1/2} \left(\frac{\vartheta_{\rm z}}{\mathbf{h}}\right)^{1/2} < 5,17$$

$$\mathbf{k}_{\rm L} = 0,725 \, \mathbf{R} e^{1/3} \, \mathbf{S} \mathbf{c}^{1/2} \left(\frac{\vartheta_{\rm z}}{\mathbf{h}}\right)^{1/2} \qquad \text{for} \qquad \mathbf{R} e^{2/3} \, \mathbf{S} \mathbf{c}^{1/2} \left(\frac{\vartheta_{\rm z}}{\mathbf{h}}\right)^{1/2} > 5,17$$
(10)

Współczynniki dyfuzji CO_2 w imidazolowych cieczach jonowych obliczano zgodnie z zależnością podaną przez Morgan et al. [12]:

$$\mathbf{D}_{\rm CO2} = 2,66 \times 10^{-3} \frac{1}{\mu_2^{0,66} \overline{\overline{\mathbf{V}}_1^{1,04}}}$$
(11)

gdzie μ_2 jest lepkością cieczy jonowej wyrażoną w cP, a V₁ jest objętością molową CO₂ w temperaturze wrzenia pod ciśnieniem 1 atm. (33,3 cm³/mol). Tak otrzymane współczynniki dyfuzji wyrażone są w cm² s⁻¹.

Współczynnik wnikania masy w fazie gazowej obliczano z korelacji Van Krevelena i Hoftijzera [13]:

$$\mathbf{Sh} = 0,11 \ \mathbf{Re}^{0,8} \mathbf{Sc}^{0,33} \tag{12}$$

2. WYNIKI OBLICZEŃ I PORÓWNANIE Z DANYMI DOŚWIADCZALNYMI

W celu rozwiązania równań modelowych (1-12) napisano program obliczeniowy w MATLAB-ie. Danymi wejściowymi do obliczeń były natężenia przepływów faz ciekłej i gazowej, stężenie wlotowe CO_2 w gazie oraz stężenie początkowe w fazie ciekłej (równe 0), temperatury gazu i cieczy oraz czas trwania procesu.

Wyniki obliczeń przedstawiono jako profile stężenia CO_2 w cieczy i w gazie wylotowym z absorbera. Stężenie wylotowe CO_2 obliczano przez całkowanie równania (8). Całkowanie prowadzono wykorzystując standardową procedurę MATLAB-a stosowaną do rozwiązywania układów równań różniczkowych nie sztywnych – ode45. Algorytm procedury ode45 bazuje na jawnej metodzie Runge-Kutty (4,5). Obliczenia przeprowadzono przy maksymalnym błędzie względnym i bezwzględnym równym 10⁻⁶. W każdym kroku całkowania stężenie gazu wylotowego (y_{out}) oraz strumień CO_2 (N_{CO2}) były obliczane z zależności równości strumieni dyfundującego CO_2 na powierzchni międzyfazowej (równanie 8). Równanie to rozwiązywano wykorzystując wbudowaną funkcję MATLAB-a fsolve z dokładnością do 10⁻⁹.

Stała absorpcji \mathbf{K}_a była obliczana zgodnie z równaniem (3) na podstawie danych literaturowych równowag rozpuszczania CO₂ w cieczach jonowych [9]. W obliczeniach wartości \mathbf{K}_a zmieniały się w granicach 0,02 do 0,8 dla [Bmim][Ac], 0,03 do 2,5 dla [Emim][Ac].

W tabeli 1 przedstawiono parametry fizyczne absorpcji CO_2 w kolumnie wypełnionej. Wszystkie parametry obliczono dla tych samych wartości doświadczalnych: temperatura równa 40°C, współprąd oraz stężenie wlotowe CO_2 równe 15% obj. Dla porównania zamieszczono wartości obliczone dla 15% mas. roztworu MEA.

ciecz	ρ kg m ⁻³	η×10 ³ Pa s	$D_{CO2} \times 10^{10}$ m ² s ⁻¹	$k_L \times 10^8$ kmol m ⁻²	$k_G \times 10^5$ kmol $m^{-2} s^{-1}$	$N_{exp,\tau=0} \times 10^{6}$ kmol m ⁻² s ⁻¹	s kg/kg
[Emim][Ac]	1025	53,05	4,21	9,90	3,08	0,166	0,053
[Bmim][Ac]	1050	145,3	2,51	6,04	3,08	0,177	0,043
15% MEA	999	0,938	22,4	204	3,08	0,668	0,049

Tabela 1. Parametry fizyczne procesu absorpcji CO₂ w kolumnie wypełnionej Table 1. Physical parameters of CO₂ absorption in packed column

Jak można zauważyć, lepkość cieczy jonowych jest znacząco większa niż roztworu MEA. W związku z powyższym współczynniki dyfuzji oraz współczynniki wnikania masy w fazie ciekłej dla obydwóch cieczy jonowych są znacznie mniejsze niż dla roztworu MEA. Obliczone współczynniki wnikania masy w fazach ciekłej i gazowej wskazują, że główny opór dyfuzyjny jest po stronie ciekłej. Gómez-Coma et al. [6] oraz Luis et al. [8] potwierdzają większy opór wnikania masy w fazie ciekłej w cieczach jonowych. Współczynniki wnikania masy w fazie ciekłej, a także strumień wymiany masy na początku procesu w przypadku cieczy jonowej są wielokrotnie mniejsze niż dla roztworu MEA. Pojemności sorpcyjne s (masa zaabsorbowanego CO_2 /masę cieczy) w podanych warunkach są porównywalne dla wszystkich cieczy.

Na rysunkach 1 i 2 porównano obliczone wartości stężenia wylotowego CO_2 w fazie gazowej z danymi doświadczalnymi. Dodatkowo przedstawiono obliczony profil stężenia CO_2 w fazie ciekłej. Wykresy przedstawiono dla współprądu, wlotowego stężenia CO_2 równego 15% obj. i temperatury 40°C. Dla obydwóch cieczy jonowych obliczenia są zgodne z wartościami doświadczalnymi. Dla porównania na rys. 3 zamieszczono analogiczny wykres dla absorpcji CO_2 w 15% mas. roztworze MEA.

Rys. 1. Profile stężeń CO₂ w gazie i cieczy dla [Bmim][Ac], *T*=40°C Fig. 1. CO₂ concentration profiles in gas and liquid for [Bmim][Ac], T=40°C

Rys. 2. Profile stężeń CO₂ w gazie i cieczy dla [Emim][Ac], *T*=40°C Fig. 2. CO₂ concentration profiles in gas and liquid for [Emim][Ac], T=40°C

Rys. 3. Profile stężeń CO₂ w gazie i cieczy dla 15% mas.. roztworu MEA, $T=40^{\circ}$ C Fig. 3. CO₂ concentration profiles in gas and liquid for15% wt. MEA solution, T=40°C

Rys. 4. Porównanie doświadczalnych i obliczeniowych strumieni absorpcji CO₂, *T*=40°C Fig. 4. Comparison of experimental and calculated CO₂ absorption fluxes, T=40°C

Porównanie obliczeniowych i doświadczalnych wartości masowych strumieni absorpcji CO_2 pokazano na rys. 4. Z powodu braku danych literaturowych dotyczących stałych kinetycznych reakcji chemicznej CO_2 z badanymi cieczami jonowymi współczynnik wzmocnienia (E) był estymowany z danych doświadczalnych. Wyestymowane wartości współczynnika wzmocnienia pozwoliły na obliczanie zaabsorbowanych strumieni masowych CO_2 w badanych cieczach jonowych. W celu porównania wyników obliczeniowych analogicznie postąpiono w przypadku pochłaniania CO_2 w roztworze MEA.

Wyznaczone wartości współczynnika wzmocnienia są bliskie wartościom znalezionym w literaturze dla podobnych przypadków, np. Meldon et.al. [14] wyznaczył wartość $E \cong 20$ dla absorpcji CO₂ w 18,3% mas. roztworze MEA. Gomez-Coma [6] dla absorpcji CO₂ w [Emim][Ac] w temperaturze 45°C, w module membranowym typu hollow-fiber wyznaczył współczynnik wzmocnienia jako równy około 51.

Zarówno obliczone, jak i zmierzone wartości wartości początkowych strumieni masowych absorpcji CO_2 w 15% mas. roztworze MEA są około 4-krotnie większe niż otrzymane dla obydwóch badanych cieczay jonowych. Strumień masowy absorbującego CO_2 w roztworze MEA zmniejsza się szybciej z czasem niż w badanych cieczach jonowych. We wszystkich przypadkach ilości zaabsorbowanego CO_2 były podobne.

Porównanie doświadczalnych i obliczeniowych wartości stężenia wylotowego CO_2 w fazie gazowej dla przypadku zraszania złoża cieczą jonową [Emim][Ac] z 5% dodatkiem wody pokazano na rys. 5.

Rys. 5. Profile stężeń CO₂ w gazie i cieczy dla [Emim] [Ac] z 5% mas. dodatkiem wody, $T{=}40^{\circ}{\rm C}$

Fig. 5. CO_2 concentration profiles in gas and liquid for [Emim][Ac] with 5% wt. water content, $T{=}40^{\circ}C$

Można zauważyć, że w początkowej fazie procesu (τ <3000 sek.) uzyskano nieznacznie lepszą sprawność usuwania CO₂ z gazu dla cieczy jonowej z dodatkiem wody w porównaniu do czystej cieczy jonowej. W późniejszym czasie (τ >3000 sek.) wyniki dla czystej cieczy jonowej i z dodatkiem wody są zbliżone.

Na rys. 6 pokazano zgodność obliczonych wartości sprawności usuwania CO_2 z gazu z doświadczalnymi dla obydwu przebadanych cieczy jonowych i roztworu MEA. Wyniki obliczeń zgadzają się z wynikami doświadczalnymi w granicach ± 20%.

Rys. 6. Porównanie doświadczalnych i obliczonych wartości efektywności usuwania ${\rm CO}_2$

Fig. 6. Comparison of experimental and calculated CO2 removal efficiency

3. WNIOSKI

- Porównanie wyników doświadczalnych i obliczeniowych uzyskanych według przedstawionego modelu wskazuje, że główny opór dyfuzyjny występuje w fazie ciekłej. Współczynnik wnikania masy w fazie ciekłej oraz początkowy strumień masowy absorpcji CO₂ w przypadku cieczy jonowych był wielokrotnie niższy niż w przypadku roztworu MEA (Tab. 1).
- Wyniki obliczeń stężenia wylotowego CO₂ uzyskane według opracowanego modelu matematycznego są zgodne z danymi doświadczalnymi (rys 1,2,5), a różnice między danymi doświadczalnymi a obliczonymi mieszczą się w granicach ± 20% (rys. 6).
- Wyestymowane wartości współczynnika wzmocnienia pozwoliły z dobrą dokładnością obliczyć strumień absorpcji CO₂ w cieczach jonowych w kolumnie wypełnionej (rys. 4).

OZNACZENIA – SYMBOLS

A - powierzchnia złoża usypanego, m²

		area of the packing bed
а	_	powierzchnia właściwa złoża, $m^2 \cdot m^{-3}$
		specific area of the bed
С -		steżenie CO ₂ w gazie
		gas CO_2 concentration
D	_	współczynnik dyfuzii. $m^2 \cdot s^{-1}$
2		diffusion coefficient
d -		średnica m
u		diameter
F	_	współczynnik wzmocnienia
L		enhacement factor
F	_	pole przekroju kolumny m ²
•		column cross section area
G.	_	całkowita masa cieczy kmol
ΟĽ		total mass of liquid
Цo		liezho Hetty
па	-	Hotte number
п		stale Henryage
п	-	Stata field yego
1.		Henry's constant
n	-	diugose kolumny, m
1		column length
K	-	wspołczynnik wnikania masy, kmol·m ⁻ ·s
		mass transfer coefficient
Ka	-	stała absorpcji
		absorption constant
k _{CF}	-	stała szybkości reakcji, kmol ⁻¹ ·s ⁻¹
		reaction rate constant
K _{ov}	-	całkowity współczynnik transportu masy, kmol·m ⁻² ·s ⁻¹
		overal mass transfer coefficient
L	-	wysokość złoża, m
		bed height
N _{CO2}		strumień absorpcji CO ₂ , kmol·m ⁻² ·s ⁻¹
		CO ₂ absorption flux
r	-	szybkość reakcji, kmol·s ⁻¹
		reaction rate
Re	-	liczba Reynoldsa
		Reynolds number
S	-	pojemność sorpcyjna
		sorption capacity
Sc	-	liczbaSchmidta
		Schmidt number
Sh	-	liczba Sherwooda
		Sherwood number

- T temperatura, °C temperature
- V natężenie przepływu, kmol·s⁻¹ flow rate
- udział molowy w fazie ciekłej mol fraction in liquid phase
- y udział molowy w fazie gazowej mol fraction in gas phase

LITERY GRECKIE – GREEK LETTERS

- ε porowatość złoża bed porosity
- $\Delta \pi$ moduł napędowy ruchu masy mass transfer driving force
- η lepkość, Pa·s viscosity
- ρ gęstość molowa, kmol·m⁻³
 molar density
- τ czas, s time
- ϑ_z długość zastępcza, m equivalent length

INDEKSY DOLNE - SUBSCRIPTS

- CO₂- dwutlenek węgla carbon dioxide
- col kolumna column
- G gaz
 - gas
- i inert inert
- in wlot do kolumny column inlet
- L ciecz liquid
- m wartość średnia na drodze dyfuzji mean value along diffusion path
- out wylot z kolumny
 - column outlet
- r pierścień Raschiga

Raschig ring

INDEKSY GÓRNE - SUPERSCRIPTS

- stan równowagi equilibrium state
- wartość średnia między wlotem i wylotem z kolumny mean value between inlet and outlet of the column

PIŚMIENNICTWO CYTOWANE - REFERENCES

- Blatha J., Deublerb N., Hirtha T., Schiestelb T., 2012. Chemisorption of carbon dioxide in imidazolium based ionic liquids with carboxylic anions, Chem. Eng. J. 181–182, 152–158.
- [2] Maginn E.J., 2005. Design and Evaluation of Ionic Liquids as Novel CO₂ Absorbents, University of Notre Dame, Notre Dame, IN 46556.
- [3] Shiflett M.B., Kasprzak D.J., Junk C.P., Yokozeki A., 2008. Phase behavior of (carbon dioxide+[Bmim][Ac]) mixtures, J. Chem. Thermodynamics, 40, 25–31.
- [4] Cabaco M.I., Besnard M., Danten Y., Coutinho J.A.P., 2012. Carbon dioxide in 1-butyl-3methylimidazolium acetate. I. Unusual solubility investigated by Raman spectroscopy and DFT calculations, J. Phys. Chem. A., 116, 1605–1620.
- [5] Galan-Sanchez L.M., Meindersma G.W., de Haan A.B., 2011. Kinetics of absorption of CO₂ in amino-funtionalized ionic liquids, Chem. Eng. J., 166, 1104–1115.
- [6] Gómez-Coma L., Garea A., Irabien A., 2014. Non-dispersive absorption of CO₂ in [emim][EtSO4] and [emim][Ac]: Temperature influence, Sep. Purif. Technol., 132, 120–125.
- [7] Shulman H.L., Ulrich C.F, Proulx A.Z., Zimmerman J.O., 1955. Performance of packed columns: II Wetted and effective-interfacial areas, gas-and liquid-phase mass transfer rates, AIChE J., 1, 253–258.
- [8] Luis P., Garea A., Irabien A., 2009. Zero solvent emission process for sulfur dioxide recovery using a membrane contactor and ionic liquids, J. Membr. Sci., 330, 80–89.
- [9] DeCoursey W.J., 1982. Enhancement factors for gas absorption with reversible reaction, Chem. Eng. Sci., 37, 1483–1489.
- [10] Shiflett M.B., Yokozeki A., 2009. Phase behavior of carbon dioxide in ionic liquids: [EMIM] [Acetate], [EMIM] [Trifluoroacetate], and [EMIM] [Acetate] + [EMIM] [Trifluoroacetate] mixtures, J. Chem. Eng. Data, 54, 108–114.
- [11] Sherwood T.K., Pigford R.L., 1952. Absorption and extraction, McGrow-Hill, New York.
- [12] Morgan D., Ferguson L., Scovazzo P., 2005. Diffusivities of gases in room-temperature ionic liquids: data and correlation obtained using a lag-time technique, Ind. Eng. Chem. Res., 44, 4815– 4823.
- [13] Bird R.B., Stewart W.E., Lightfoot E.N., 2002. Transport phenomena, second ed., Jon Wiley & Sons Inc., New York.
- [14] Meldon J.H., Morales-Cabrera A.A., 2011. Analysis of carbon dioxide absorption in and stripping from monoethanolamine, Chem. Eng. J., 171, 753–759.

ADAM ROTKEGEL, ZENON ZIOBROWSKI,

ABSORPTION OF CARBON DIOXIDE IN COLUMN SPRAYED WITH IONIC LIQUID. PART II – MATHEMATICAL MODEL AND CALCULATION RESULTS

The mathematical model of carbon dioxide removal from gases in packed bed column sprayed with ionic liquid was presented. Calculations were performed for column sprinkled with ionic liquids [Emim][Ac] and [Bmim][Ac] in temperature range 20-60°C, for cocurrent flow of gas and liquid phase.

The influence of mass transfer resistances, initial CO_2 concentration, absorption temperature and 2, 5, 10% wt. water addition on CO_2 removal efficiency was investigated.

The resistance in series model and estimated values of enhancement factor were used to predict with good accuracy: mass fluxes of absorbed carbon dioxide for both ILs (Fig. 4) and CO_2 concentration in gases leaving column (Fig. 1-3). The CO_2 absorption efficiency in packed column depends on temperature and initial CO_2 concentration.

The calculation results shows that main mass transfer resistance in the process of CO_2 absorption in packed column is in the liquid phase for both investigated ILs. The mass transfer resistance is gas phase can be neglected (Table 1).

The addition of small amounts of water to [Emim][Ac] (5%) slightly increases CO₂ absorption rates (especially in the first period of time τ <3000s), while equilibrium absorption capacity does not changed.

Received: 2.09.2016 *r. Accepted:* 20.10.2016 *r.*