PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Travelling wave solutions of the non-linear wave equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article focuses on the exact periodic solutions of nonlinear wave equations using the well-known Jacobi elliptic function expansion method. This method is more general than the hyperbolic tangent function expansion method. The periodic solutions are found using this method which contains both solitary wave and shock wave solutions. In this paper, the new results are computed using the closed-form solution including solitary or shock wave solutions which are obtained using Jacobi elliptic function method. The corresponding solitary or shock wave solutions are compared with the actual results. The results are visualised and the periodic behaviour of the solution is described in detail. The shock waves are found to break with time, whereas, solitary waves are found to be improved continuously with time.
Rocznik
Strony
239--245
Opis fizyczny
Bibliogr. 42 poz., tab.
Twórcy
  • Abdus Salam School of Mathematical Sciences, Government College University, 68-B, New MuslimTown, Lahore 54600, Pakistan
  • Abdus Salam School of Mathematical Sciences, Government College University, 68-B, New MuslimTown, Lahore 54600, Pakistan
  • Abdus Salam School of Mathematical Sciences, Government College University, 68-B, New MuslimTown, Lahore 54600, Pakistan
autor
  • Abdus Salam School of Mathematical Sciences, Government College University, 68-B, New MuslimTown, Lahore 54600, Pakistan
Bibliografia
  • 1. Asghar S, Haider JA, Muhammad N. The modified KdV equa-tion for a nonlinear evolution problem with perturbation tech-nique. International Journal of Modern Physics B. 2022 Sep 30;36(24):2250160.
  • 2. Fang J, Nadeem M, Habib M, Akgül A. Numerical investiga-tion of nonlinear shock wave equations with fractional order in propagating disturbance. Symmetry. 2022 Jun 8;14(6):1179.
  • 3. Shah NA, El-Zahar ER, Akgül A, Khan A, Kafle J. Analysis of fractional-order regularized long-wave models via a novel transform. Journal of Function Spaces. 2022 Jun 6;2022.
  • 4. Rabie WB, Seadawy AR, Ahmed HM. Highly dispersive Opti-cal solitons to the generalized third-order nonlinear Schrö-dinger dynamical equation with applications. Optik. 2021 Sep 1;241:167109.
  • 5. Rabie WB, Ahmed HM. Cubic-quartic optical solitons and other solutions for twin-core couplers with polynomial law of nonlinearity using the extended F-expansion method. Optik. 2022 Mar 1;253:168575.
  • 6. Malfliet W. Solitary wave solutions of nonlinear wave equa-tions. American journal of physics. 1992 Jul;60(7):650-4.
  • 7. He JH, Wu XH. Exp-function method for nonlinear wave equa-tions. Chaos, Solitons & Fractals. 2006 Nov 1;30(3):700-8.
  • 8. Zhang JL, Wang ML, Wang YM, Fang ZD. The improved F-expansion method and its applications. Physics Letters A. 2006 Jan 30;350(1-2):103-9.
  • 9. Zayed EM, Arnous AH. The modified wg-expansion method and its applications for solving the modified generalized Vakh-nenko equation. Italian Journal of Pure and Applied Mathe-matics. 2014;32:477-92.
  • 10. Yang AM, Yang XJ, Li ZB. Local fractional series expansion method for solving wave and diffusion equations on Cantor sets. InAbstract and Applied Analysis 2013 Jan 1 (Vol. 2013). Hindawi.
  • 11. Wazwaz AM. A sine-cosine method for handlingnonlinear wave equations. Mathematical and Computer modelling. 2004 Sep 1;40(5-6):499-508.
  • 12. Islam MT, Akbar MA, Azad AK. A rational (G/G)-expansion method and its application to modified KdV-Burgers equation and the (2+ 1)-dimensional Boussineq equation. Nonlinear Stud. 2015 Sep 1;6(4):1-1.
  • 13. Parkes EJ. Observations on the tanh–coth expansion method for finding solutions to nonlinear evolution equations. Applied Mathematics and Computation. 2010 Oct 15;217(4):1749-54.
  • 14. Haider, J.A. and Muhammad, N., 2022. Computation of ther-mal energy in a rectangular cavity with a heated top wall. International Journal of Modern Physics B, 36(29), p.2250212.
  • 15. Haider JA, Ahmad S. Dynamics of the Rabinowitsch fluid in a reduced form of elliptic duct using finite volume method. Inter-national Journal of Modern Physics B. 2022 Dec 10;36(30):2250217.
  • 16. Nadeem S, Haider JA, Akhtar S, Ali S. Numerical simulations of convective heat transfer of a viscous fluid inside a rectangu-lar cavity with heated rotating obstacles. International Journal of Modern Physics B. 2022 Nov 10;36(28):2250200.
  • 17. Hashemi MS, Akgül A. Solitary wave solutions of time–space nonlinear fractional Schrödinger’s equation: Two analytical approaches. Journal of Computational and Applied Mathemat-ics. 2018 Sep 1;339:147-60.
  • 18. Hashemi MS, Inc M, Kilic B, Akgül A. On solitons and invariant solutions of the Magneto-electro-elastic circular rod. Waves in Random and Complex Media. 2016 Jul 2;26(3):259-71.
  • 19. Haider JA, Muhammad N. Mathematical analysis of flow passing through a rectangular nozzle. International Journal of Modern Physics B. 2022 Oct 20;36(26):2250176.
  • 20. Seadawy AR, Ahmed HM, Rabie WB, Biswas A. An alternate pathway to solitons in magneto-optic waveguides with triple-power law nonlinearity. Optik. 2021 Apr 1;231:166480.
  • 21. Ahmed HM, Rabie WB, Arnous AH, Wazwaz AM. Optical solitons in birefringent fibers of Kaup-Newell's equation with extended simplest equation method. Physica Scripta. 2020 Oct 16;95(11):115214.
  • 22. Bilal M, Seadawy AR, Younis M, Rizvi ST, Zahed H. Disper-sive of propagation wave solutions to unidirectional shallow water wave Dullin–Gottwald–Holm system and modulation in-stability analysis. Mathematical Methods in the Applied Sci-ences. 2021 Mar 30;44(5):4094-104.
  • 23. Seadawy AR, Ali A, Albarakati WA. Analytical wave solutions of the (2+ 1)-dimensional first integro-differential Kadomtsev-Petviashivili hierarchy equation by using modified mathemati-cal methods. Results in Physics. 2019 Dec 1;15:102775.
  • 24. Ali I, Seadawy AR, Rizvi ST, Younis M, Ali K. Conserved quantities along with Painleve analysis and Optical solitons for the nonlinear dynamics of Heisenberg ferromagnetic spin chains model. International Journal of Modern Physics B. 2020 Dec 10;34(30):2050283.
  • 25. Khan MA, Akbar MA, binti Abd Hamid NN. Traveling wave solutions for space-time fractional Cahn Hilliard equation and space-time fractional symmetric regularized long-wave equa-tion. Alexandria Engineering Journal. 2021 Feb 1;60(1): 1317-24.
  • 26. Rizvi ST, Seadawy AR, Ashraf F, Younis M, Iqbal H, Baleanu D. Lump and interaction solutions of a geophysical Korteweg–de Vries equation. Results in Physics. 2020 Dec 1;19:103661.
  • 27. Xu C, Farman M, Hasan A, Akgül A, Zakarya M, Albalawi W, Park C. Lyapunov stability and wave analysis of Covid-19 omicron variant of real data with fractional operator. Alexan-dria Engineering Journal. 2022 Dec 1;61(12):11787-802.
  • 28. Ahmed HM, Rabie WB. Structure of optical solitons in magne-to–optic waveguides with dual-power law nonlinearity using modified extended direct algebraic method. Optical and Quan-tum Electronics. 2021 Aug;53(8):438.
  • 29. Seadawy AR, Lu D, Iqbal M. Application of mathematical methods on the system of dynamical equations for the ion sound and Langmuir waves. Pramana. 2019 Jul;93:1-2.
  • 30. Lu D, Seadawy AR, Arshad M. Bright–dark solitary wave and elliptic function solutions of unstable nonlinear Schrödinger equation and their applications. Optical and Quantum Elec-tronics. 2018 Jan;50:1-0.
  • 31. Ahmad H, Seadawy AR, Khan TA. Numerical solution of Korteweg–de Vries-Burgers equation by the modified varia-tional iteration algorithm-II arising in shallow water waves. Physica Scripta. 2020 Feb 13;95(4):045210.
  • 32. Seadawy AR, Arshad M, Lu D. The weakly nonlinear wave propagation theory for the Kelvin-Helmholtz instability in mag-netohydrodynamics flows. Chaos, Solitons & Fractals. 2020 Oct 1;139:110141.
  • 33. Khan MA, Ali Akbar M, Ali NH, Abbas MU. The New Auxiliary Method in the Solution of the Generalized Burgers-Huxley Equation. Journal of Prime Research in Mathematics. 2020;16(2):16-26.
  • 34. Zabusky NJ, Kruskal MD. Interaction of" solitons" in a colli-sionless plasma and the recurrence of initial states. Physical review letters. 1965 Aug 9;15(6):240.
  • 35. Seadawy AR, Ali S, Rizvi ST. On modulation instability analy-sis and rogue waves in the presence of external potential: The (n+ 1)-dimensional nonlinear Schrödinger equation. Chaos, Solitons & Fractals. 2022 Aug 1;161:112374.
  • 36. Chen Y, Yan Z. The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations. Chaos, Solitons & Fractals. 2006 Aug 1;29(4):948-64.
  • 37. Haider JA, Asghar S, Nadeem S. Travelling wave solutions of the third-order KdV equation using Jacobi elliptic function method. International Journal of Modern Physics B. 2022 Oct 26:2350117.
  • 38. Korteweg DJ, De Vries G. XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1895 May 1;39(240):422-43.
  • 39. Grébert B. KdV & KAM ergebnisse der mathematik und ihrer grenzgebiete 3. The Mathematical Intelligencer. 2004 Sep;26(3):76-7.
  • 40. Korteweg DJ, De Vries G. XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1895 May 1;39(240):422-43.
  • 41. Wang M, Li X, Zhang J. The (G′ G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Physics Letters A. 2008 Jan 21;372(4):417-23.
  • 42. Alam MN, Akbar MA, Roshid HO. Traveling wave solutions of the Boussinesq equation via the new approach of generalized (G′/G)-expansion method. SpringerPlus. 2014 Dec;3:1-9.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f67c977-1add-4ea3-bde2-4f90fa56277b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.