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Abstract: This article focuses on the exact periodic solutions of nonlinear wave equations using the well-known Jacobi elliptic function  
expansion method. This method is more general than the hyperbolic tangent function expansion method. The periodic solutions are found 
using this method which contains both solitary wave and shock wave solutions. In this paper, the new results are computed using  
the closed-form solution including solitary or shock wave solutions which are obtained using Jacobi elliptic function method.  
The corresponding solitary or shock wave solutions are compared with the actual results. The results are visualised and the periodic  
behaviour of the solution is described in detail. The shock waves are found to break with time, whereas, solitary waves are found  
to be improved continuously with time. 
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1. INTRODUCTION 

In several subfields within physics and engineering, the notion 
of soliton is an important concept. The solitons are used in model-
ling of optics, hydrodynamics, nuclear physics, biomechanics, 
plasma physics and many other fields [1–3]. While in most cases, 
the solution to nonlinear governing equations is associated with a 
soliton, this equation describes a wave that maintains its form 
across time [4]. For the solution of the nonlinear differential equa-
tions, several methods are defined such as tangent hyperbolic 
(tanh) expansion method [5], tanh-sech expansion method [6], 
exponent expansion method [7], F-expansion method [8], modified 

simple expansion method [9], exp(-∅(α)) expansion method [10], 
sine-cosine method [11], expansion method [12], coth-expansion 
function method [13], and some more methods have also been 
purposed [14–16]. These methods only predict the solution of the 
solitary and the shock waves but are unable to predict the periodic 
behaviour of the solutions.  

Finding travelling wave solutions of nonlinear partial differen-
tial equations is of significant interest, especially in integrable 
systems [17–26]. In past, the studies presented by different re-
searchers yielded several intriguing forms of solutions, including 
soliton solutions, cnoidal solutions, compacton solutions and 
peakon solutions. Nevertheless, as the literature indicates, dis-
covering these answers has not been simple. In recent studies 
[27–33], the research scholars provided a straightforward method 
for constructing travelling wave solutions to general nonlinear 
equations, which may or may not be integrable, beginning with 
solutions of simple equations (including even linear equations). As 
proved by nontrivial examples (usually involving equations of the 
third order), this method is particularly effective for getting travel-
ling wave solutions of nonlinear equations. The generation of 

travelling wave solutions of a large class of partial differential 
equations beginning with a trial travelling wave and an invertible 
map from a trial travelling wave are the primary contributions  
of this paper. However, we now realise that the underlying reason 
for the simplicity of our earlier proposal [35] is due to some re-
markable properties of travelling wave solutions. 
In 1996, a well-known mathematician [36] purposed the shock and 
solitary wave solutions as well as the periodic solutions by using 
the Weierstrass elliptic function. In this article, various nonlinear 
wave equations are solved using the Jacobi elliptic function ex-
pansion approach, which is more general than the hyperbolic 
tangent function expansion method. It is demonstrated that this 
strategy yields periodic solutions that include certain shock wave 
and solitary wave solutions. In mathematics, a group of funda-
mental elliptic functions known as the Jacobi elliptic functions can 
be found easily. One can find the applications of these functions in 
the characterisation of the oscillation of a pendulum and in the 
design of electronic elliptic filters [37]. Jacobi’s elliptic operations 
are the generalisation that refers to those other conics, the ellipse 
in particular, whereas trigonometry functions are specified con-
cerning a circle. Unlike the Weierstrass elliptic functions, the 
Jacobi elliptic functions do not need to be explained in terms of 
complex analysis before they can be used in the real world. 

2. METHOD EXPLANATION 

The Jacobi elliptic function expansion method is summarised 
as follows. 

Consider a given equation for nonlinear waves 

𝐺 (𝑤,
𝜕𝑤

𝜕𝑡
,
𝜕𝑤

𝜕𝑥
,
𝜕2𝑤

𝜕𝑡2
,
𝜕2w

𝜕𝑥2
, … ) = 0,  (1) 
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the travelling wave is the solution to the form 

𝑤(𝑥, 𝑡) = 𝑤(𝜉) , 𝜉 = 𝑘(𝑥 − 𝑐𝑡),  (2) 

where k represents the number of waves and c represents their 
speed, correspondingly. A method known as the expansion of the 

Jacobi elliptic function can be used to represent 𝑤(𝜉) as a finite 

series of the Jacobi elliptic function, 𝜉, which stands for the an-
satz. 

𝑤(𝜉) = ∑ 𝑎𝑖
𝑛
𝑖=0 𝑠𝑛𝑖  𝜉,  (3) 

is produced based on the highest degree, which is 

𝑂(𝑤(𝜉) = 𝑚,  (4) 

which represents the differential equation. From Eq. (3), we have 

𝑑𝑤

𝑑𝜉
= ∑ 𝑖𝑎𝑖

𝑛
𝑖=0 𝑠𝑛𝑖−1𝜉(𝑐𝑛 𝜉)dn 𝜉,  (5) 

where all the above functions sn 𝜉, cn 𝜉 and 𝑑𝑛𝜉 are the Jacobi 
elliptic functions of the third kind. 

2.1. Relation between the square of the functions 

𝑠𝑛2(𝜉) + 𝑐𝑛2(𝜉) = 1,  (6) 

𝑑𝑛2(𝜉) + 𝑚2𝑠𝑛2(𝜉) = 1,  
𝑐𝑛2 +𝑚′𝑠𝑛2 = 𝑑𝑛2,  

(7) 

2.2. Jacobi elliptic functions as solutions of nonlinear 
ordinary differential equations 

The derivatives of the three basic Jacobi elliptic functions are:  
(0 ≺ 𝑚 ≺ 1)  

(
𝑑

𝑑𝜉
) (𝑠𝑛(𝜉))  =  𝑐𝑛(𝜉)𝑑𝑛(𝜉),   

(8) (
𝑑

𝑑𝜉
) (𝑐𝑛(𝜉))  =  −𝑠𝑛(𝜉)𝑑𝑛(𝜉),   

(
𝑑

𝑑𝜉
) (𝑑𝑛(𝜉))  =  −𝑚2𝑐𝑛(𝜉)𝑠𝑛(𝜉),   

the ordinary differential equation balances the highest derivative 
with the highest nonlinear part.  
 

Tab. 1. When 𝑛 = 0 or 𝑛 = 1, the Jacobi elliptic functions are reduced  

             to non-elliptic functions  

Function 𝒏 = 𝟎 𝒏 = 𝟏 

𝑠𝑛(𝑢, 𝑛) 𝑠𝑖𝑛𝑢 𝑡𝑎𝑛ℎ𝑢 

𝑐𝑛(𝑢, 𝑛) 𝑐𝑜𝑠𝑢 𝑠𝑒𝑐ℎ𝑢 

𝑑𝑛(𝑢, 𝑛) 1 𝑠𝑒𝑐ℎ𝑢 

𝑛𝑠(𝑢, 𝑛) 𝑐𝑠𝑐𝑢 𝑐𝑜𝑡ℎ𝑢 

𝑛𝑐(𝑢, 𝑛) 𝑠𝑒𝑐𝑢 𝑐𝑜𝑠ℎ𝑢 

𝑛𝑑(𝑢, 𝑛) 1 𝑐𝑜𝑠ℎ𝑢 

𝑠𝑑(𝑢, 𝑛) 𝑠𝑖𝑛𝑢 𝑠𝑖𝑛ℎ𝑢 

𝑐𝑑(𝑢, 𝑛) 𝑐𝑜𝑠𝑢 1 

𝑐𝑠(𝑢, 𝑛) 𝑐𝑜𝑡𝑢 𝑐𝑠𝑐ℎ𝑢 

𝑑𝑠(𝑢, 𝑛) 𝑐𝑠𝑐𝑢 𝑐𝑠𝑐ℎ𝑢 

𝑑𝑐(𝑢, 𝑛) 𝑠𝑒𝑐𝑢 1 

𝑠𝑐(𝑢, 𝑛) 𝑡𝑎𝑛𝑢 𝑠𝑖𝑛ℎ𝑢 

After this process, we choose the order of the ordinary differ-
ential equation on its base and choose the series of the function. 

𝑂 (
𝑑𝑞𝑤

𝑑𝜉𝑞
) = 𝑚 + 𝑞 , 𝑞 = 1,2,3, …  (9) 

𝑂 (𝑤𝑝 𝑑
𝑞𝑤

𝑑𝜉𝑞
) = (𝑝 + 1)𝑚 + 𝑞, 𝑞 = 1,2,3,…  (10) 

Therefore, m can be chosen in Eq. (3) to strike a good bal-
ance between the highest-order derivative term and the nonlinear 
component Eq. (1). 

Eq. (3) in its following form is shown in Tab. 1. 

𝑤(𝜉) = ∑ 𝑎𝑖𝑡𝑎𝑛ℎ
𝑖𝜉,𝑛

𝑖=0   (11) 

Therefore, the Jacobi elliptic function expansion approach is 
superior than the hyperbolic tangent function expansion method in 
terms of its universal applicability. 

2.3. Applications 

A number of the nonlinear models are solved using the Jacobi 
elliptic function method, and a lot of applications are found in 
different fields of real word problems. 

2.3.1.  Model 1  

The Korteweg–De Vries (KdV) equation in mathematics is a 
mathematical model of waves on shallow water surfaces. It is 
especially significant as the classic example of a perfectly solva-
ble model, i.e., a non-linear partial differential equation whose 
solutions can be precisely described. The KdV equation can be 
solved using the inverse scattering transform. The mathematical 
theory behind the KdV equation is an active area of study. The 
KdV equation was first presented by Boussinesq and afterwards 
found by Diederik Korteweg and Gustav de Vries (1895) [38]. 
Zabusky and Kruskal (1965) [34] discovered statistically that the 
solutions of the KdV equation appeared to break down at large 
times into a collection of ‘solitons’: well-separated solitary waves. 
Moreover, the shape of the solitons appears to be essentially 
unaffected by their passage through one another (though this 
could cause a change in their position). By demonstrating that the 
KdV equation represented the continuum limit of the FPUT sys-
tem, they established a relationship to earlier numerical experi-
ments by Fermi, Pasta, Ulam and Tsingou. In 1967, Gardner, 
Greene, Kruskal and Miura developed an analytic solution utilising 
the inverse scattering transform [39–41]. 

(
𝜕𝑞

𝜕𝑡
) + 12 𝑞 (

𝜕𝑞

𝜕𝑥
) + 2𝛽 (

𝜕3𝑞

𝜕𝑥3
) = 0  (11) 

Step 1: Using transformation for the above Eq. (11 

𝑞(𝑥, 𝑡) = 𝑞(𝜉), 𝜉 = 𝑘(𝑥 − 𝑐𝑡), (12) 

by using Eq. (12) transformation, the above partial differential 
equations are converted into the ordinary differential equation, 
and in the above transformation k and c represent the wave num-
ber and the wave speed. 

(
𝜕𝑞

𝜕𝑥
) =  𝑘 (

𝜕𝑞

𝜕𝜉
)                                                                        (13) 

(
𝜕3𝑞

𝜕𝑥3
) =  𝑘3 (

𝜕3𝑞

𝜕𝜉3
)                                                                  (14) 
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Putting Eqs (13) and (14) in Eq. (11), the above equation be-
comes, 

−2𝑐 (
𝜕𝑞

𝜕𝜉
) + 12𝜇𝑞 (

𝜕𝑞

𝜕𝜉
) + 2𝛽𝑘2 (

𝜕3𝑞

𝜕𝜉3
) = 0,  (15) 

which is the required ordinary differential equation that can be 
obtained by travelling wave solution. 
Step 2: Now balancing the above ordinary differential equation 
balancing the highest derivative with the nonlinear part after this 
process we balanced our required ordinary differential equation 
balancing 

𝑂 (𝑞 (
𝜕𝑞

𝜕𝜉
))  =  2𝑚 + 1,  (16) 

𝑂 ((
𝜕3𝑞

𝜕𝜉3
)) = 𝑚 + 3,  (17) 

Comparing Eqs (16) and (17) 

𝑚  =  2  (18) 

The above ordinary differential equation is balanced at m = 2 
Step 3: In this method, the finite series method of the Jacobi 
elliptic function is employed for the nonlinear equation and the 
values of constants are found. Here the trigonometric cosine and 
sine functions are used and are represented with cn and sn. 

The solution to the previous equation could take the form  
of a travelling wave 

𝑞(𝜉) = 𝑎0 + 𝑎1𝑠𝑛(𝜉) + 𝑎2𝑠𝑛
2(𝜉) + 𝑂(𝑠𝑛3(𝜉)),  (19) 

we truncated up to two terms because the above is balanced at m 
= 2. 

(
𝜕𝑞

𝜕𝜉
) =  (𝑎1 + 2𝑎2𝑠𝑛(𝜉))𝑐𝑛(𝜉)𝑑𝑛(𝜉),  (20) 

𝑞 (
𝜕𝑞

𝜕𝜉
) =  [𝑎0𝑎1 + (𝑎1

2 + 2𝑎0𝑎2)𝑠𝑛(𝜉) +

3𝑎1𝑎2𝑠𝑛
2(𝜉) + 2𝑎2

2𝑠𝑛3(𝜉)]𝑐𝑛(𝜉)𝑑𝑛(𝜉),  
(21) 

(
𝜕2𝑞

𝜕𝜉2
) =

 
2𝑎2 − (1 +𝑚

2)𝑎1𝑠𝑛(𝜉) − 4𝑎2(1 + 𝑚
2)𝑠𝑛2(𝜉)

+2𝑚2𝑎1𝑠𝑛
3(𝜉) + 6𝑚2𝑎2𝑠𝑛

4(𝜉)
},  

(22) 

(
𝜕3𝑞

𝜕𝜉3
) =

 
[−(1 + 𝑚2)𝑎1 − 8(1 + 𝑚

2)𝑎2𝑠𝑛(𝜉)]𝑐𝑛(𝜉)𝑑𝑛(𝜉)

+[6𝑚2𝑎1𝑠𝑛
2(𝜉) + 24𝑚2𝑎2𝑠𝑛

3(𝜉)]𝑐𝑛(𝜉)𝑑𝑛(𝜉)
},  

(23) 

Substituting Eqs (20–23) in Eq. (15) 

−2𝑐[(𝑎1 + 2𝑎2𝑠𝑛(𝜉))𝑐𝑛(𝜉)𝑑𝑛(𝜉)]

+12𝜇 [[
𝑎0𝑎1 + (𝑎1

2 + 2𝑎0𝑎2)𝑠𝑛(𝜉)

+3𝑎1𝑎2𝑠𝑛
2(𝜉) + 2𝑎2

2𝑠𝑛3(𝜉)
] 𝑐𝑛(𝜉)𝑑𝑛(𝜉)]

+2𝛽𝑘2 [[
−(1 +𝑚2)𝑎1 − 8(1 + 𝑚

2)𝑎2𝑠𝑛(𝜉)

+6𝑚2𝑎1𝑠𝑛
2(𝜉) + 24𝑚2𝑎2𝑠𝑛

3(𝜉)
] 𝑐𝑛(𝜉)𝑑𝑛(𝜉)]

}
  
 

  
 

= 0, (24) 

Comparing coefficients on both side  

[−𝑐𝑎1 + 𝑎0𝑎1 − 𝑘
2𝛽(1 + 𝑚2)𝑎1] =  0,  (25) 

[−2𝑎2𝑐 + 𝑎1
2 + 2𝑎0𝑎2 − 8𝑘

2𝛽(1 + 𝑚2)𝑎2] =  0,  (26) 

3𝑎1𝑎2 + 6𝑚
2𝛽𝑘2 =  0,  (27) 

2𝑎2
2 + 24𝑚2𝛽𝑘2𝑎2 =  0,  (28) 

 

By solving the above-mentioned equations using Mathematica 

Bulit in Software for finding the values of the constants a0, a1 and 

a2. 

𝑎0 =  𝑐 + 4𝛽𝑘
2 + 4𝛽𝑘2𝑚2,  (29) 

𝑎1 =  0,  (30) 

𝑎2 = −12𝑘
2𝑚2𝛽,  

(31) 

Putting the above values of the constant in the above-
mentioned equation 

𝑞(𝜉) = 𝑐 + 4𝛽𝑘2 + 4𝛽𝑘2𝑚2 −
12𝑘2𝑚2𝛽𝑠𝑛2(𝜉)+ O (𝑠𝑛2(𝜉)),   

(32) 

This is the periodic solution precise to the model Eq. (1). In 
common usage, this solution is known as the cnoidal wave solu-

tion to the model equation that came before it. When m =  1, the 
expression Eq. (22) is simplified as 

𝑞(𝜉) = 𝑐 − 4𝛽𝑘2 + 12𝑘2𝛽𝑠𝑒𝑐ℎ2(𝜉),  (33) 

Which is the model equation’s solitary wave solution particu-
larly when c = 1. 

𝑞(𝜉) = 3𝑐(𝑠𝑒𝑐ℎ2(𝑥 − 𝑐𝑡))√
𝑐

4𝛽
(𝑥 − 𝑐𝑡),  (34) 

2.3.2. Model 2 

This model represents the coupled system of partial differen-
tial equations [37]. 

𝑞 (
𝜕𝑞

𝜕𝑡
) + 12𝑞 (

𝜕𝑞

𝜕𝑥
) + (

𝜕𝑧

𝜕𝑥
) + 𝛼 (

𝜕3𝑞

𝜕𝑡𝜕𝑥2
) =  0,  (35) 

(
𝜕𝑞

𝜕𝑡
) + (

𝜕(𝑞𝑧)

𝜕𝑥
) + 6𝛽 (

𝜕3𝑞

𝜕𝑥3
) =  0,  (36) 

These are known as couple equations, so we solve these 
equations by using a travelling wave solution. 
Step 1: Here we suppose the possible travelling wave solution for 
the above-coupled equations 

𝑞(𝑥, 𝑡)  =  𝑞(𝜉), 𝜉 = 𝑘(𝑥 − 𝑐𝑡),  
(37) 

𝑧(𝑥, 𝑡)  =  𝑧(𝜉), 𝜉 = 𝑘(𝑥 − 𝑐𝑡),  

By using Eq. (37), we transform the above coupled partial dif-
ferential equation into an ordinary differential equation. In the 
above transformation, k and c represent the wave number and the 
wave speed, respectively. 

(𝑞) =  −𝑐𝑘 (
𝜕𝑞

𝜕𝜉
),  

(38) 

(
𝜕𝑞

𝜕𝑥
) =  𝑘 (

𝜕𝑞

𝜕𝜉
) , (

𝜕𝑧

𝜕𝑥
) =  𝑘 (

𝜕𝑧

𝜕𝜉
),  

(
𝜕2𝑞

𝜕𝑥2
) =  𝑘2 (

𝜕2𝑞

𝜕𝜉2
),  

(
𝜕3𝑞

𝜕𝑥3
) =  𝑘3 (

𝜕3𝑞

𝜕𝜉3
),  

Putting Eq. (38) in Eq. (35), we have the following equation: 

−𝑐𝑞 (
𝜕𝑞

𝜕𝜉
) + 12𝑞 (

𝜕𝑞

𝜕𝜉
) + (

𝜕𝑧

𝜕𝜉
) − 𝑐𝑘2𝛼 (

𝜕3𝑞

𝜕𝜉3
) = 0,  (39) 

which is the required ordinary differential equation that can be 
obtained using travelling wave solution. 
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Step 2: Now balancing the above ordinary differential equation 
balancing the highest derivative with the nonlinear part after this 
process we balanced our required ordinary differential equation 
balancing 

𝑂 (𝑞 (
𝜕𝑞

𝜕𝜉
))  =  2𝑚 + 1,   (40) 

𝑂 ((
𝜕3𝑞

𝜕𝜉3
)) = 𝑚 + 3,   (41) 

Comparing Eqs (40) and (41) 

𝑚  =  2   (41) 

The above ordinary differential equation is balanced  
at m = 2. 
Step 3: In this method, we apply a finite series method of the 
Jacobi elliptic function on nonlinear equation and find the values 
of constants. Here we use cosine and sine functions which are 
represented by cn and sn. 

The solution to the previous equation could take the form of a 
travelling wave. 

𝑞(𝜉) = 𝑎0 + 𝑎1𝑠𝑛(𝜉) + 𝑎2𝑠𝑛
2(𝜉) +

𝑂(𝑠𝑛3(𝜉)),   (42) 
𝑧(𝜉) = 𝑏0 + 𝑏1𝑠𝑛(𝜉) + 𝑏2𝑠𝑛

2(𝜉) + 𝑂(𝑠𝑛3(𝜉)),  

We truncated up to two terms because the above is balanced 
at m = 2. 

(
𝜕𝑞

𝜕𝜉
) =  (𝑎1 + 2𝑎2𝑠𝑛𝜉)𝑐𝑛(𝜉)𝑑𝑛(𝜉),  (43) 

𝑞 (
𝜕𝑞

𝜕𝜉
) =  [𝑎0𝑎1 + (𝑎1

2 + 2𝑎0𝑎2)𝑠𝑛(𝜉) +

3𝑎1𝑎2𝑠𝑛
2(𝜉) + 2𝑎2

2𝑠𝑛3𝜉]𝑐𝑛(𝜉)𝑑𝑛(𝜉),  
(44) 

(
𝜕𝑧

𝜕𝜉
) =  (𝑏1 + 2𝑏2𝑠𝑛𝜉)𝑐𝑛(𝜉)𝑑𝑛(𝜉),  (45) 

(
𝜕3𝑞

𝜕𝜉3
) =

 
[−(1 + 𝑚2)𝑎1 − 8(1 + 𝑚

2)𝑎2𝑠𝑛(𝜉)]𝑐𝑛(𝜉)𝑑𝑛(𝜉)

+[6𝑚2𝑎1𝑠𝑛
2(𝜉) + 24𝑚2𝑎2𝑠𝑛

3(𝜉)]𝑐𝑛(𝜉)𝑑𝑛(𝜉)
         },  

(46) 

By using the defining values of the above equations, we have, 

−𝑐𝑞[(𝑎1 + 2𝑎2𝑠𝑛𝜉)𝑐𝑛(𝜉)𝑑𝑛(𝜉)] + [𝑎0𝑎1 + (𝑎1
2 + 2𝑎0𝑎2)𝑠𝑛(𝜉)]𝑐𝑛(𝜉)𝑑𝑛(𝜉)

+12[3𝑎1𝑎2𝑠𝑛
2(𝜉) + 2𝑎2

2𝑠𝑛3𝜉]𝑐𝑛(𝜉)𝑑𝑛(𝜉) + [(𝑏1 + 2𝑏2𝑠𝑛𝜉)𝑐𝑛(𝜉)𝑑𝑛(𝜉)]

−𝑐𝑘2𝛼 [
[−(1 + 𝑚2)𝑎1 − 8(1 + 𝑚

2)𝑎2𝑠𝑛(𝜉)]𝑐𝑛(𝜉)𝑑𝑛(𝜉)

−𝑐𝑘2𝛼[+6𝑚2𝑎1𝑠𝑛
2(𝜉) + 24𝑚2𝑎2𝑠𝑛

3(𝜉)]𝑐𝑛(𝜉)𝑑𝑛(𝜉)
]

}
 
 

 
 

,= 0 (47) 

Comparing coefficients on both sides  

[−𝑐𝑎1 + 𝑎0𝑎1 + 𝑏1 + 𝑐𝑘
2𝛼(1 + 𝑚2)𝑎1] =  0,  (48) 

[−2𝑎2𝑐 + 𝑎1
2 + 2𝑎0𝑎2 + 2𝑏2 + 8𝑐𝑘

2𝛼(1 +
𝑚2)𝑎2] =  0,  

(49) 

3𝑎1𝑎2 + 6𝑚
2 =  0,  (50) 

2𝑎2
2 − 24𝑚2𝑎2 =  0,  (51) 

Step 2: Again, we repeated Step 2 for the coupled partial differen-
tial equation. 

Now balancing the above ordinary differential equation bal-
ancing the highest derivative with the nonlinear part after this 
process we balanced our required ordinary differential equation 
balancing 

𝑂 (𝑧 (
𝜕𝑞

𝜕𝜉
))  =  𝑂 (𝑞 (

𝜕𝑧

𝜕𝜉
)) =  2𝑚 + 1,    (52) 

𝑂 ((
𝜕3𝑞

𝜕𝜉3
)) = 𝑚 + 3,  (53) 

Comparing Eqs (52) and (53) 

𝑚  =  2  (54) 

The above ordinary differential equation is balanced at 

𝑚 = 2 

Step 3: In this method, we apply a finite series method of the 
Jacobi elliptic Function on a nonlinear equation and find the val-
ues of constants. Here we use cosine and sine functions which 
are represented by cn and sn. 

The solution to the previous equation could take the form of a 
travelling wave. 

(
𝜕𝑧

𝜕𝜉
) = (𝑏1 + 2𝑏2𝑠𝑛𝜉)𝑐𝑛(𝜉)𝑑𝑛(𝜉),  

 
(55) 

𝑞 (
𝜕𝑧

𝜕𝜉
) =

 
[𝑎0𝑏1 + (𝑎1𝑏1 + 2𝑎0𝑏2)𝑠𝑛(𝜉)]𝑐𝑛(𝜉)𝑑𝑛(𝜉)

+[(2𝑎1𝑏2 + 𝑎2𝑏1)𝑠𝑛
2(𝜉) + 2𝑎2𝑏2𝑠𝑛

3𝜉]𝑐𝑛(𝜉)𝑑𝑛(𝜉)
     },  

(56) 

𝑧 (
𝜕𝑞

𝜕𝜉
) =

 
[𝑏0𝑎1 + (𝑎1𝑏1 + 2𝑏0𝑎2)𝑠𝑛(𝜉)]𝑐𝑛(𝜉)𝑑𝑛(𝜉)

+[(2𝑏1𝑎2 + 𝑎2𝑏1)𝑠𝑛
2(𝜉) + 2𝑏2𝑎2𝑠𝑛

3𝜉]𝑐𝑛(𝜉)𝑑𝑛(𝜉)
     },  

(57) 

(
𝜕3𝑞

𝜕𝜉3
) =

 
[−(1 + 𝑚2)𝑎1 − 8(1 + 𝑚

2)𝑎2𝑠𝑛(𝜉)]𝑐𝑛(𝜉)𝑑𝑛(𝜉)

+[6𝑚2𝑎1𝑠𝑛
2(𝜉) + 24𝑚2𝑎2𝑠𝑛

3(𝜉)]𝑐𝑛(𝜉)𝑑𝑛(𝜉)
  },  

(58) 

By substituting the values of Eqs (55)–(58) in Eq. (36), we 
have the following equation: 

−𝑐[(𝑏1 + 2𝑏2𝑠𝑛𝜉)𝑐𝑛(𝜉)𝑑𝑛(𝜉)] + [𝑎0𝑏1 + (𝑎1𝑏1 + 2𝑎0𝑏2)𝑠𝑛(𝜉)]𝑐𝑛(𝜉)𝑑𝑛(𝜉)

+[(2𝑎1𝑏2 + 𝑎2𝑏1)𝑠𝑛
2(𝜉) + 2𝑎2𝑏2𝑠𝑛

3𝜉]𝑐𝑛(𝜉)𝑑𝑛(𝜉)

+[𝑏0𝑎1 + (𝑎1𝑏1 + 2𝑏0𝑎2)𝑠𝑛(𝜉)]𝑐𝑛(𝜉)𝑑𝑛(𝜉)

+[(2𝑏1𝑎2 + 𝑎2𝑏1)𝑠𝑛
2(𝜉) + 2𝑏2𝑎2𝑠𝑛

3𝜉]𝑐𝑛(𝜉)𝑑𝑛(𝜉)

+𝛽𝑘2[−(1 + 𝑚2)𝑎1 − 8(1 + 𝑚
2)𝑎2𝑠𝑛(𝜉)]𝑐𝑛(𝜉)𝑑𝑛(𝜉)

+𝛽𝑘2[6𝑚2𝑎1𝑠𝑛
2(𝜉) + 24𝑚2𝑎2𝑠𝑛

3(𝜉)]𝑐𝑛(𝜉)𝑑𝑛(𝜉)  

    

}
  
 

  
 

,= 0  (59) 
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By comparing the coefficients on both sides, we have, 

[−𝑐𝑏1 + 𝑎0𝑏1 + 𝑎1𝑏0 − 𝑘
2𝛽(1 + 𝑚2)𝑎1] =  0,  (60) 

[−2𝑏2𝑐 + 2𝑎0𝑏2 + 2𝑎1𝑏1 + 2𝑏0𝑎2 −
8𝑘2𝛽(1 +𝑚2)𝑎2] =  0,  (61) 

3𝑎1𝑏2 + 3𝑎2𝑏1 + 6𝛽𝑘
2𝑚2𝑎1 =  0,  (62) 

4𝑎₂𝑏₂ + 24𝛽𝑘²𝑚²𝑎₂ =  0,  (63) 

By solving the above-mentioned equations by using Mathe-
matica Bulit in Software for finding the values of the constants 
a0, a1, a2, b0, b1 and b2. 

𝑎0 =  𝑐 + (
𝛽

2𝛼𝑐
) − 4𝑐𝑘2𝛼(1 + 𝑚2),  (64) 

𝑎1 =  0,  (65) 

𝑎2 =  12𝑘
2𝑚2𝛼𝑐,  (66) 

𝑏0 = (
𝛽2

4𝛼2𝑐2
) + 2𝛽(1 + 𝑚2)𝑘2,  (67) 

𝑏1 =  0,  (68) 

𝑏2 = −6𝑐𝛽
2𝑚2,  (69) 

Hence the series solution of the sn for the coupled Eqs (35) 
and (36) written as 

𝑞(𝜉) =  𝑐 + (
𝛽

2𝛼𝑐
) − 4𝑐𝑘2𝛼(1 + 𝑚2) +

[12𝑘2𝑚2𝛼𝑐]𝑠𝑛2(𝜉) + 𝑂(𝑠𝑛3(𝜉)),   
(70) 

𝑧(𝜉) =  (
𝛽2

4𝛼2𝑐2
) + 2𝛽(1 + 𝑚2)𝑘2 +

[−6𝑐𝛽2𝑚2]𝑠𝑛2(𝜉) + 𝑂(𝑠𝑛3(𝜉)),  
(71) 

It is the solution for cnoidal waves and the precise periodic so-
lution of Eqs (70) and (71), while the corresponding solitary wave 
solution for them is 

𝑞(𝜉) =

 𝑐 + (
𝛽

2𝛼𝑐
) + 4𝑐𝑘2𝛼 − [12𝑘2𝛼𝑐]𝑠𝑒𝑐ℎ2(𝜉),  

(72) 

𝑧(𝜉) =  − (
𝛽2

4𝛼2𝑐2
) − 2𝛽𝑘2 − [6𝑐𝛽2]𝑠𝑒𝑐ℎ2(𝜉),  (73) 

2.3.3. Model 3 

Exact solutions of nonlinear evolution equations (NLEEs) are 
very important to figure out how complex physical phenomena 
work on the inside. In this work, the new generalised Jacobi ellip-
tic function expansion method is used to look at the exact travel-
ling wave solutions of the Boussinesq equation [42]. With this 
method, one can get a lot of travelling wave solutions with any 
parameters, and the wave solutions are written in terms of elliptic 
functions. It is shown that the new generalised Jacobi elliptic 
function expansion method is a powerful and clear way to solve 
nonlinear partial differential equations in mathematical physics 
and engineering [37]. 

(
𝜕2𝑞

𝜕𝑡2
) − 12𝑐0

2 (
𝜕2𝑞

𝜕𝑥2
) − 𝛼𝑞 (

𝜕4𝑞

𝜕𝑥4
) − 6𝛽 (

𝜕2𝑞2

𝜕𝑥2
) = 0,   (75) 

The solution to Eq. (75) is 

 𝑐2(𝑎2 − (1 +𝑚
2)𝑎1𝑠𝑛(𝜉) − 4𝑎2(1 +

𝑚2)𝑠𝑛2(𝜉) + 2𝑚2𝑎1𝑠𝑛
3(𝜉) + 6𝑚2𝑎2𝑠𝑛

4(𝜉))   
(76) 

By comparing the coefficients on both sides of the Eq. (76), 
we find the values of the constants given below: 

𝑎0 = (
𝑐2−𝑐0

2

2𝛽
) + (

2𝛼𝑘2

𝛽
) + (

2𝑚2𝛼𝑘2

𝛽
),  (77) 

𝑎1 =  0,  (78) 

𝑎2 = − (
6𝑚2𝛼𝑘2

𝛽
),  (79) 

The solution of Model 3 is in the form of the periodic solitary 
wave by using Eqs (77–79) in Eq. (19) we have, 

𝑞(𝜉) =  (
𝑐2−𝑐0

2

2𝛽
) + (

2𝛼𝑘2

𝛽
) + (

2𝑚2𝛼𝑘2

𝛽
) −

(
6𝑚2𝛼𝑘2

𝛽
) 𝑠𝑛2(𝜉) + 𝑂(𝑠𝑛3(𝜉)),  

(80) 

The solitary wave solution that corresponds to this one is 

𝑞(𝜉) =  (
𝑐2−𝑐0

2

2𝛽
) − (

2𝛼𝑘2

𝛽
) + (

6𝛼𝑘2

𝛽
) 𝑠𝑒𝑐ℎ2(𝜉),  (81) 

3. CONCLUDING REMARKS 

The Jacobi elliptic function expansion approach is presented 
and applied to nonlinear wave equations in this study. This meth-
od is more general than the hyperbolic tangent function expansion 
method, as demonstrated. In addition, the shock wave and solitary 
wave solutions are included in the periodic wave solutions derived 
from the Jacobi elliptic function expansion approach. In the appli-
cations, it is demonstrated that the Jacobi elliptic function expan-
sion approach applies to both single and coupled equations. In 
fact, this method can be used to solve more nonlinear wave equa-
tions so long as the odd-order and even-order derivative terms do 
not overlap in the nonlinear wave equations. It is found that the 
shock waves break with time, whereas, solitary waves are im-
proved continuously with time. 
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