PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Postępy w fotowoltaice w Polsce i na świecie

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Progress in photovoltaics in Poland and in the world
Konferencja
ECOpole’15 Conference (14-16.10.2015, Jarnoltowek, Poland)
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono postęp w zakresie uzyskiwanych sprawności przez ogniwa i moduły fotowoltaiczne (PV) wykonane z różnych materiałów i za pomocą różnych technologii. Zawarto w nim szczegółowe zestawienia tabelaryczne sprawności oraz ich parametrów technicznych. Zwrócono uwagę na nowe obiecujące technologie, które jeszcze nie mają rekordowych sprawności, ale z uwagi na proces ich wytwarzania rokują nadzieje na uzyskanie bardzo dużych sprawności albo tanich wielkopowierzchniowych modułów do komercyjnego zastosowania. Ponadto, omówiono ekonomiczne skutki wdrożenia nowo zawartych zapisów w uchwalonej w lutym 2015 r. Ustawie o Odnawialnych Źródłach Energii (OZE) dla rozwoju rozproszonych instalacji prosumenckich w Polsce.
EN
The article presents progress in efficiency achieved by PV cells and modules made of different materials and technologies. The detailed tabular compilations of performance and technical specifications were included. Attention is paid to promising new technologies that do not yet have a record performance, but because of the very process of their manufacture - augur hope for a very high performance or low-cost large-area modules for commercial use. Moreover, it discusses the economic impact of the implementation of the newly set records in the recently passed (February 2015) Act on Renewable Energy Sources for the development of distributed prosumer systems in Poland.
Rocznik
Strony
699--719
Opis fizyczny
Bibliogr. 74 poz., rys., wykr., tab.
Twórcy
  • Zakład Badań Fizykochemicznych, Samodzielna Katedra Biotechnologii i Biologii Molekularnej, Uniwersytet Opolski, ul. kard. B. Kominka 6, 45-032 Opole, tel. 77 401 60 42, fax 77 401 60 51
autor
  • Instytut Elektrotechniki Przemysłowej, Wydział Elektryczny, Politechnika Częstochowska, al. Armii Krajowej 17, 42-200 Częstochowa, tel. 34 325 08 27
autor
  • Zakład Badań Fizykochemicznych, Samodzielna Katedra Biotechnologii i Biologii Molekularnej, Uniwersytet Opolski, ul. kard. B. Kominka 6, 45-032 Opole, tel. 77 401 60 42, fax 77 401 60 51
Bibliografia
  • [1] Popławski T, Szeląg P, Całus D, Głowiński C, Adamowicz Ł. Użycie metod grupowania do prognozowania generacji wiatrowej. Rynek Energii. 2013;5(108).
  • [2] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
  • [3] Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (version 44). Progr Photovolt: Res Appl. 2014;22:701-710. DOI: 10.1002/pip.2525.
  • [4] Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (version 45). Progr Photovolt: Res Appl. 2015;23:1-9. DOI: 10.1002/pip.2573.
  • [5] Panasonic Press Release, 10 April 2014. Panasonic HIT® solar cell achieves world’s highest energy conversion efficiency of 25.6% at research level. http://panasonic.co.jp/corp/news/official.data/data.dir/2014/04/en140410-4/en140410-4.html (dostęp 24.04.2014).
  • [6] Schultz O, Glunz SW, Willeke GP. Multicrystalline silicon solar cells exceeding 20% efficiency. Progr Photovolt Res Appl. 2004;12:553-558. DOI: 10.1002/pip.583.
  • [7] Verlinden P, Deng W, Zhang X, Yang Y, Xu J, Shu Y, et al. Strategy: Development and Mass Production of High-Efficiency Crystalline Si PV Modules. Paper 4sMoO.1.4. 6th World Conf. on PV Energy Conversion. Kyoto, November 2014.
  • [8] Moslehi MM, Kapur P, Kramer J, Rana V, Seutter S, Deshpande A, et al. World record 20.6% efficiency 156 mm x 156 mm full-squaresolar cells using low-cost kerfless ultrathin epitaxial silicon & porous silicon lift-off technology for industry-leading high-performance smart PV modules. PV Asia Pacific Conference (APVIA/PVAP), 24 October 2012.
  • [9] Roselund C. The disruptive potential of thin and kerfless wafers. PV Magazine. 2014;September:60-63. http://www.pv-magazine.com/archive/articles/beitrag/the-disruptive-potential-of-thin-and-kerfless-wafers-_100016427/86/?tx_ttnews%5BbackCat%5D=248&cHash=4cb9a5153dd6d10526f35c9ff676c161#axzz46TH0CFgC.
  • [10] Keevers MJ, Young TL, Schubert U, Green MA. 10% Efficient CSG minimodules. 22nd European Photovoltaic Solar Energy Conference, Milan, September 2007.
  • [11] Venkatasubramanian R, O’Quinn BC, Hills JS, Sharps PR, Timmons ML, Hutchby JA, et al. 18.2% (AM1.5) Efficient GaAs solar cell on optical-grade polycrystalline Ge substrate. Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washington, May 1997; 31-36. DOI: 10.1109/PVSC.1996.563940.
  • [12] Keavney CJ, Haven VE, Vernon SM. Emitter structures in MOCVD InP solar cells. Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May, 1990; 141-144.
  • [13] Osborne M. Hanergy’s solibro has 20.5% CIGS solar cell verified by NREL, 8 April 2014. http://www.pv-tech.org/news/hanergys_solibro_has_20.5_cigs_solar_cell_verified_by_nrel (dostęp 24.04.2014).
  • [14] Wallin E, Malm U, Jarmar T, Lundberg O, Edoff M, Stolt L. World-record Cu (In,Ga)Se2-based thin-film sub-module with 17.4% efficiency. Progr Photovolt Res Appl. 2012;20:851-854. DOI: 10.1002/pip.2246.
  • [15] www.ge-energy.com/products_and_services/products/solar_power/cdte_thin_film_solar_module78.jsp (dostęp 13.11.2012).
  • [16] First Solar Press Release, August 5, 2014.
  • [17] Benagli S, Borrello D, Vallat-Sauvain E, Meier J, Kroll U, Hötzel J, et al. High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor. 24th European Photovoltaic Solar Energy Conference. Hamburg, September 2009. https://www.researchgate.net/publication/237150668_High_efficiency_amorphous_silicon_devices_on_LP-CVD_TCO_prepared_in_industrial_Kai-M_RD_reactor.
  • [18] Matsui T, Sai H, Suezaki T, Matsumoto M, Saito K, Yoshida I, et al. Development of highly stable and efficient amorphous silicon based solar cells. Proc 28th European Photovoltaic Solar Energy Conference, 2013; 2213-2217. DOI: 10.4229/28thEUPVSEC2013-3DO.7.2.
  • [19] Sai H, Koida T, Matsui T, Yoshida I, Saito K, Kondo M. Microcrystalline silicon solar cells with 10.5% efficiency realized by improved photon absorption via periodic textures and highly transparent conductive oxide. Applied Physics Express. 2013;6:104101-1-104101-6. DOI: 10.7567/APEX.6.104101.
  • [20] Sai H, Matsui T, Matsubara K, Kondo M, Yoshida I. 11.0%-efficient thin-film microcrystalline silicon solar cells with honeycomb textured substrates. IEEE Journal of Photovoltaics. 2014;1349-1353. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6901203.
  • [21] Komiya R, Fukui A, Murofushi N, Koide N, Yamanaka R, Katayama H. Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module. Technical Digest, 21st International Photovoltaic Science and Engineering Conference, Fukuoka, November 2011: 2C-5O-08.
  • [22] Morooka M, Ogura R, Orihashi M, Takenaka M. Development of dye-sensitized solar cells for practical applications. Electrochemistry. 2009;77:960-965.
  • [23] Ozawa H, Okuyama Y, Arakawa H. Dependence of the efficiency improvement of black-dye-based dye-sensitized solar cells on alkyl chain length of quaternary ammonium cations in electrolyte solutions. Chem Phys Chem 2014;15:1201-1206. DOI: 10.1002/cphc.201301025.
  • [24] Kawai M. High-durability dye improves efficiency of dyesensitized solar cells. Nikkei Electronics 2013; Feb. 1 (http://techon.nikkeibp.co.jp/english/NEWS_EN/20130 131/263532/) (dostęp 23.10.2013).
  • [25] Hosoya M, Oooka H, Nakao H, Mori S, Gotanda T, Shida N, et al. Module development for polymer solar cells. Abstract O-PV-6-2, Grand Renewable Energy Conference, Tokyo, July 2014; 21-37.
  • [26] Hosoya M, Oooka H, Nakao H, Gotanda T, Mori S, Shida N, et al. Organic thin film photovoltaic modules. Proc 93rd Annual Meeting Chem Soc Japan. 2013;21-37.
  • [27] Sasaki K, Agui T, Nakaido K, Takahashi N, Onitsuka R, Takamoto T. Proc 9th Inter Conf Concentr Photovolt Systems. Miyazaki, Japan 2013.
  • [28] Ahn SW, Lee SE, Lee HM. Toward commercialization of triple-junction thin- film silicon solar panel with >12% efficiency. 27th Europ Photovolt Solar Energy Conf, 3AO5.1, Frankfurt, September 2012.
  • [29] http://www.kaneka-solar.com.
  • [30] Matsui T, Sai H, Saito K, Kondo M. High-efficiency thin-film silicon solar cells with improved light soaking stability. Progr Photovolt: Res Appl. 2013; 21: 1363. DOI: 10.1002/pip.2300.
  • [31] http://www.solar.tel.com (dostęp 24.04.2014).
  • [32] Zhao J, Wang A, Yun F, Zhang G, Roche DM, Wenham SR, et al. 20,000 PERL silicon cells for the "1996 World Solar Challenge" solar car race. Progr Photovolt. 1997;5:269-276.
  • [33] Swanson R. The role of modeling in SunPower’s commercialization efforts. Presented at Challenges in PV Science, Technology, and Manufacturing: A workshop on the role of theory, modeling and simulation. Purdue University, August 2-3, 2012.
  • [34] www.pvtech.org/news/q_cells_sets_two_new_world_records_for_multi_crystalline_and_quasi_mono_sol.
  • [35] Basore PA. Pilot production of thin-film crystalline silicon on glass modules. Conf. Record, 29th IEEE Photovoltaic Specialists Conference, New Orleans, May, 2002, 49-52.
  • [36] Mattos LS, Scully SR, Syfu M, Olson E, Yang L, Ling C, et al. New module efficiency record: 23.5% under 1-sun illumination using thin-film singlejunction GaAs solar cells. Proc 38th IEEE Photovolt Specialists Conf. 2012. DOI: 10.1109/PVSC.2012.6318255.
  • [37] First Solar press release, 19 March 2014.: First Solar Sets Thin-Film Module Efficiency World Record of 17.0 Percent. http://investor.firstsolar.com/releases.cfm?sect=all (dostęp 24.04.2014).
  • [38] http://www.miasole.com.
  • [39] Sugimoto H. High efficiency and large volume production of CIS-based modules. 40th IEEE Photovoltaic Specialists Conference, Denver, June 2014. DOI: 10.1109/PVSC.2014.6925503.
  • [40] TEL Solar Press Release, July 9, 2014.
  • [41] Zhao J, Wang A, Green MA, Ferrazza F. Novel 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl Phys Lett. 1998;73:1991-1993. DOI: 10.1063/1.122345.
  • [42] Cousins PJ, Smith DD, Luan HC, Manning J, Dennis TD, Waldhauer A, et al. Gen III: improved performance at lower cost. 35th IEEE PVSC, Honolulu, HI, June 2010.
  • [43] Engelhart P, Wendt J, Schulze A, Klenke C, Mohr A, Petter K, et al. R&D pilot line production of multi-crystalline Si solar cells exceeding cell efficiencies of 18%. Energy Procedia, 1st Inter Conf Silicon Photovolt, Freiburg, 17-20 April, 2010. www.Elsevier.com/locate/procedia. DOI: 10.1016/j.egypro.2011.06.142.
  • [44] Geisz JF, Steiner MA, Garcia I, Kurtz SR, Friedman DJ. Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells. Appl Phys Lett. 2013:103(4):041118-1-041118-3.
  • [45] Solar Frontier Press Release, 2 April 2014. Solar frontier sets thin-film PV world record with 20.9% CIS cell. http://www.solar-frontier.com/eng/news/ 2014/C031367.html (dostęp 24.04.2014).
  • [46] Nakamura M, Yamaguchi K, Chiba Y, Hakuma H, Kobayashi T, Nakada T. Achievement of 19.7% efficiency with a small-sized Cu (InGa) (SeS)2 solar cells prepared by sulfurization after selenization process with Zn-based buffer. 39th IEEE PVSC, Tampa, USA, June 18, 2013. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6744278.
  • [47] Powalla M, Jackson P, Hariskos D, Paetel S, Witte W, Würz R, et al. CIGS Thin-Film Solar Cells with an Improved Efficiency of 20.8%. 29th European Photovoltaic Solar Energy Conference, 3AO.4.2. Amsterdam, September 2014.
  • [48] First Solar press release. 25 February, 2014. First solar sets world record for CdTe solar cell efficiency. http://investor.firstsolar.com/releases.cfm?sect=all (dostęp 24.09.2015).
  • [49] Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov TK, Zhu Y, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv Energy Mater. 2013;4:1-5. DOI: 10.1002/aenm.201301465.
  • [50] Eguchi T, Maki T, Tajima S, Ito T, Fukano T. Cu2ZnSnS4 solar cells with 7.6% efficiency. Technical Digest. 21st Inter Photovolt Sci Eng Conf, Fukuoka, November 2011: 4D-3P-24.
  • [51] Noh JH, Im SH, Heo JH, Mandal TH, Seok SI. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013: 13; 1764-1769. DOI: 10.1021/nl400349b.
  • [52] Service R. Outlook brightens for plastic solar cells. Science 2011;332(6027):293. DOI: 10.1126/science.332.6027.293.
  • [53] Slade A, Garboushian V. 27.6% efficient silicon concentrator cell for mass production. Technical Digest, 15th Inter Photovolt Sci Eng Conf, Shanghai, October 2005; 701. https://www.researchgate.net/publication/267779112_276_Efficient_Silicon_Concentrator_Solar_Cells_for_Mass_Production.
  • [54] Ward JS, Ramanathan K, Hasoon FS, Coutts TJ, Keane J, Contreras MA, et al. 21.5% efficient Cu (In,Ga)Se2 thin-film concentrator solar cell. Progr Photovolt: Res Appl. 2002;10:41-46. http://www.nrel.gov/docs/fy02osti/31144.pdf.
  • [55] Release P, Corporation S, 31 May 2012. http://sharp-world.com/corporate/news/120531.html (dostęp 5.06.2013).
  • [56] Press Release, Fraunhofer Institute for Solar Energy Systems, 1 December 2014. http://www.ise.fraunhofer.de/en/press-and-media/press-releases/pressreleases-2014/new-world-record-forsolar-cell-efficiencyat-46-percent (dostęp 7.12.2014).
  • [57] McCambridge JD, Steiner MA, Unger BA, Emery KA, Christensen EL, Wanlass MW, et al. Compact spectrum splitting photovoltaic module with high efficiency. Progr Photovolt Res Appl. 2011;19:352-360. DOI: 10.1002/pip.1030.
  • [58] Keevers MJ, Lau CFJ, Thomas I, Lasich JB, King RR, Green MA. High Efficiency Spectrum Splitting Prototype Submodule Using Commercial CPV Cells. Paper 5WeO.4.4, 6th World Conf PV Energy Conversion, Kyoto, November 2014. http://www.nrel.gov/docs/fy15osti/63395.pdf.
  • [59] Chiang CJ, Richards EH. A 20% efficient photovoltaic concentrator module. Conf. Record, 21st IEEE Photovolt Specialists Conf, Kissimimee, May 1990: 861-863.
  • [60] http://amonix.com/pressreleases/amonix-achieves-worldrecord-359-module-efficiency-rating-nrel-4 (dostęp 23.10.2013).
  • [61] Steiner M, Bösch A, Dilger A, Dimroth F, Dörsam T, Muller M, et al. FLATCON® CPV module with 36.7% efficiency equipped with four-junction solar cells. Progr Photovolt: Res Appl. 2014;23(10). DOI: 10.1002/pip.2568.
  • [62] Zhang F, Wenham SR, Green MA. Large area, concentrator buried contact solar cells. IEEE Trans Electron Dev. 1995;42:144-149. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=370024.
  • [63] Slooff LH, Bende EE, Burgers AR, Budel T, Pravettoni M, Kenny RP, et al. A luminescent solar concentrator with 7.1% power conversion efficiency. Phys Status Solidi (RRL). 2008;2(6):257-259. DOI: 10.1002/pssr.200802186.
  • [64] Loferski J. Theoretical considerations governing the choose of the optimum semiconductor for photovoltaic solar energy conversion. J Appl Phys. 1956;27:777-784. http://scitation.aip.org/content/aip/journal/jap/27/7/ 10.1063/1.1722483.
  • [65] Wacławek M., Rodziewicz T. Ogniwa słoneczne, Wpływ środowiska naturalnego na ich pracę. Warszawa: WNT; 2011.
  • [66] Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J Amer Chem Soc. 2009;131(17):6050-6051. DOI: 10.1021/ja809598r.
  • [67] http://isap.sejm.gov.pl/DetailsServlet?id=WDU20150000478.
  • [68] Rodziewicz T, Zaremba A, Wacławek M. Technical and Economic Aspects of Photovoltaic Conversion of Southern Poland. Ecol Chem Eng S. 2014;21(2):337-351. DOI: 10.2478/eces-2014-0026.
  • [69] http://www.ise.fraunhofer.de/en/renewable-energy-data, 19.06.2015.
  • [70] EPIA - Global Market Outlook for Photovoltaics 2014-2018, http://www.epia.org/home/ 09.11.2014.
  • [71] https://www.nfosigw.gov.pl/oferta-finansowania/srodki-krajowe/programy-priorytetowe/prosumentdofinansowanie-mikroinstalacji-oze/aktualnosci/art,14,ustawa-oze-a-program-prosument.html.
  • [72] http://www.reo.pl/uwagi-ieo-do-nowelizacji-ustawy-o-oze.
  • [73] http://www.reo.pl/pigeor-nowelizacja-ustawy-o-oze-budzi-watpliwosci.
  • [74] http://wysokienapiecie.pl/prawo-energetyczne/736-ustawa-o-oze-nowelizacja-zmiana-taryf.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f66fa69-cf8f-4746-a373-4a2715d87273
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.