PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Digital Elevation Model-Derived Morphometric Indices for Physical Characterization of the Issen Basin (Western High Atlas of Morocco)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study attempts to describe the physical characteristics of the Issen basin (western High Atlas of Morocco) in order to highlight the factors affecting water flow and volume that may increase water erosion risk. By using ALOS-DEM of moderate spatial resolution (12.5 m) and GIS platform, it was possible to provide a joint set of morphometric indices of the study area. The obtained results reveal that the relief of the study basin is of mountainous symptom indicating its maturity. The contrasting topography (625 m to 3528 m), with a specific unevenness of the order of 612 m, highlights a strong relief. 94% of the watershed area has a slope of over 3%. The mean elongation of the basin is 1.74, with a fairly long water concentration time of about 7.5 hours and an average drainage density of 0.85 km-1. The tectonics, lithology, and external geodynamics characterstics indicate a strongly contrasted morphology characterizing the Issen basin. Overall, these morphometric characteristics can increase the shallow water flows and sediments mobilized by the Issen Wadi, which can increase the soil loss and flooding risks in the basin.
Twórcy
  • Department of Earth Sciences, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Marocco
  • Department of Earth Sciences, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Marocco
  • Department of Earth Sciences, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Marocco
autor
  • Department of Earth Sciences, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Marocco
  • Department of Earth Sciences, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Marocco
  • Department of Earth Sciences, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Marocco
  • Department of Earth Sciences, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Marocco
Bibliografia
  • 1. Ait Haddou M., Kabbachi B., Aydda A., Bouchriti Y., Gougeni H., En-Naciry M., Aichi A. 2022. Traditional practices: A window for water erosion management in the Argana basin (Western High Atlas Morocco). E3S Web of Conferences, 337, 02002. https://doi.org/10.1051/e3sconf/202233702002
  • 2. Ait Haddou M., Kabbachi B., Aydda A., Gougni H., Bouchriti Y. 2020b. Spatial and temporal rainfall variability and erosivity: Case of the Issen watershed, SW-Morocco. E3S Web of Conferences, 183, 02003. https://doi.org/10.1051/e3sconf/202018302003
  • 3. Ait Haddou M., Kabbachi B., Labbaci A., Ezaidi S., Bouchriti Y. 2020a. Soil erosion prediction based on modelling and siltation at the watershed upstream of the Abdelmomen dam in Argana corridor (SW Morocco). Int. J. Sci. Res. Innov. Std., 2, 1. https://ijarimss.org/publications/volume2-issue1/
  • 4. Ait Melouk M. 2020. Caractérisation d’un bassin versant en climat semi-aride: analyses sédimentologiques, cartographies des zones à risques naturels par SIG et télédétection cas du bassin versant de l’oued Rdat, Marrakech, Maroc. Ph.D Dissertation, Cadi Ayyad University.
  • 5. Amaya A.D. 2015. Analyse sédimentaires, gestion et approche par Télédétection et SIG des risques naturels du bassin versant semi-aride de l’Oued N’fis, Maroc. Ph.D Dissertation, Cadi Ayyad University.
  • 6. Bendjoudi H., Hubert P. 2002. The Gravelius compactness coefficient: critical analysis of a shape index for drainage basins. Hydrol Sci J, 47(6), 921–930. https://doi.org/10.1080/02626660209493000
  • 7. Bouras F., Djebbar Y., Abida H. 2010. Estimation de l’envasement des Barrages: une approche non paramétrique. J Int Environ Manag Confl, 1(1), 114–119.
  • 8. Chacrone C., Hamoumi N. 2005. L’Arenig–Llanvirn du Haut Atlas occidental et central (Maroc). Environnements sédimentaires, paléogéographie et contrôle de la sédimentation. CR Geosci, 337(12), 1026–1034. https://doi.org/10.1016/j.crte.2005.05.015
  • 9. Chakhchar A., Haworth M., El Modafar C., Lauteri M., Mattioni C., Wahbi, S., Centritto M. 2017. An Assessment of Genetic Diversity and Drought Tolerance in Argan Tree (Argania spinosa) Populations: Potential for the Development of Improved Drought Tolerance. Front Plant Sci, 8, 276. https://doi.org/10.3389/fpls.2017.00276
  • 10. Douvinet J., Delahaye D., Langlois P. 2008. Modélisation de la dynamique potentielle d’un bassin versant et mesure de son efficacité structurelle. Cybergeo Europ J Geogr, 412. https://doi.org/10.4000/cybergeo.16103
  • 11. Dubreuil P., Morell M., Séchet P. 1975. Comportement et interactions des paramètres physiques des petits bassins versants semi-arides et intertropicaux. Cah. Orstom, Sér. Hydrol, 13(1), 13–36.
  • 12. El Mouden A., Alahiane N., El Faskaoui M., El Morjani Z.E.A. 2017. Dams siltation and soil erosion in the Souss–Massa river basin. (In: Choukr-Allah R., Ragab R., Bouchaou L., Barceló D. (eds)). The Souss-Massa River Basin, Morocco, The Handbook of Environmental Chemistry. Springer International Publishing, Cham, 95–120. https://doi.org/10.1007/698_2016_70
  • 13. Genchi S.A., Vitale A.J., Perillo G.M.E., Piccolo M.C. 2016. Geomorphometric assessment of drainage systems in a semi-arid region of Argentina using geospatial tools and multivariate statistics. Earth Sci Inform, 9(3), 309–324. https://doi.org/10.1007/s12145-016-0258-2
  • 14. Gericke O.J., Du Plessis J.A. 2012. Catchment parameter analysis in flood hydrology using GIS applications. J S Afr Inst Civ Eng, 54(2), 15–26.
  • 15. Giandotti M. 1934. Previsione delle piene e delle magre dei corsi d’acqua. Memorie e studi idrografici, 8, 107–117.
  • 16. Gómez-Villar A., Álvarez-Martínez J., García-Ruiz J.M. 2006. Factors influencing the presence or absence of tributary-junction fans inthe Iberian Range, Spain. Geomorphology, 81(3-4), 252–264. https://doi.org/10.1016/j.geomorph.2006.04.011
  • 17. Gravelius H. 1914. Grundriβ der gesamten Gewâsserkunde, Band 1: fluβkunde (Compendium of Hydrology, vol. 1: Rivers, in German). Goschen, Berlin, Germany.
  • 18. Hamed K.B., Bouanani A. 2016. Caractérisation d’un bassin versant par l’analyse statistique des paramètres morphométriques : Cas du bassin versant de la Tafna. (Nord-ouest algérien). Geo-Eco-Trop, 40(4), 277–286.
  • 19. Harvey A.M. 1989. The occurrence and role of arid zone alluvial fans. In: Thomas, D.S.G. (ed.), Arid Zone Geomorphology. Belhaven, London, 136–158.
  • 20. Hofmann A., Tourani A., Gaupp R. 2000. Cyclicity of Triassic to Lower Jurassic continental red beds of the Argana Valley, Morocco: implications for palaeoclimate and basin evolution. Palaeogeogr Palaeoclimatol Palaeoecol, 161(1–2), 229–266. https://doi.org/10.1016/S0031-0182(00)00125-5
  • 21. Horton R.E. 1945. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol Soc Am Bull, 56(3), 275–370. https://doi.org/10.1130/0016-7606(1945)56(275:EDOSAT)2.0.CO;2
  • 22. Jobin T., Sabu J., Thrivikramaji K.P. 2010. Morphometric aspects of a small tropical mountain river system, the southern Western Ghats, India. Int J Digit Earth, 3(2), 135–156. https://doi.org/10.1080/17538940903464370
  • 23. Julien P.Y. 2010. Erosion and sedimentation. Cambridge University Press, Cambridge.
  • 24. Kent D.V., Olsen P.E., Muttoni G., Et-Touhami M. 2021. A Late Permian paleopole from the Ikakern Formation (Argana basin, Morocco) and the configuration of Pangea. Gondwana Res, 92, 266–278. https://doi.org/10.1016/j.gr.2021.02.009
  • 25. Kovacs A.S., Fulop B., Honti M. 2012. Detection of hot spots of soil erosion and reservoir siltation in ungauged Mediterranean catchments. Energy Procedia, 18, 934–943. https://doi.org/10.1016/j.egypro.2012.05.108
  • 26. Markhi A., Laftouhi N., Grusson Y., Soulaimani A. 2019. Assessment of potential soil erosion and sediment yield in the semi-arid N′ fis basin (High Atlas, Morocco) using the SWAT model. Acta Geophys, 67(1), 263–272.https://doi.org/10.1007/s11600-019-00251-z
  • 27. Medina F., Vachard D., Colin J.P., Ouarhache D., Ahmamou M. 2001. Charophytes et ostracodes du niveau carbonaté de Taourirt Imzilen (Membre d’Aglegal, Trias d’Argana); implications stratigraphiques. Bull Inst Sci, 23, 21–26.
  • 28. Michard A., Saddiqi O., Chalouan A., Rjimati E., Mouttaqi A. 2011. Nouveaux guides géologiques et miniers du Maroc. Notes Mém Serv Géol Maroc, 3, 558.
  • 29. Mohameden A., Baghdad B., Chakiri S., El Hadi H., Hamoud A., Zoraa N., Zerdeb M.A., Moussa K. 2022. Quantification and evaluation of water erosion by RUSLE / GIS approach in the Ykem watershed (western Morocco). Ecol Eng Environ Tech (in Press).
  • 30. Mridekh A. 2002. Géodynamique des bassins mésocénozoïques de subsurface de l’offshore d’Agadir (Maroc sud occidental) : contribution à la reconnaissance de l’histoire atlasique d’un segment de la marge atlantique marocaine. Ph.D Dissertation, Ibn Tofail University.
  • 31. Nitheshnirmal S., Thilagaraj P., Abdul Rahaman S., Jegankumar R. 2019. Erosion risk assessment through morphometric indices for prioritisation of Arjuna watershed using ALOS-PALSAR DEM. Model Earth Syst Environ, 5, 907–924. https://doi.org/10.1007/s40808-019-00578-y
  • 32. ONE. 2011. Actualisation de l’étude d’impact sur l’environnement du projet de station de transfert d’énergie par pompage d’Abdelmoumen. Unpublished Report.
  • 33. PNUE/PAM/PAP. 2000. Directives pour la gestion de programmes de contrôle d’érosion et de désertification, plus particulièrement destinées aux zones côtières méditerranéennes. Split, Programme d’actions prioritaires.
  • 34. Rieke-Zapp D.H., Nearing M.A. 2005. Slope shape effects on erosion: a laboratory study. Soil Sci Soc Am J, 69(5), 1463–1471. https://doi.org/10.2136/sssaj2005.0015
  • 35. Roche M. 1963. Hydrologie de surface. Gauthier-Villars Editeur, Paris.
  • 36. Rollet A.J. 2007. Etude et gestion de la dynamique sédimentaire d’un tronçon fluvial à l’aval d’un barrage: le cas de la basse vallée de l’Ain. Géomorphologie. Ph.D Dissertation, Jean Moulin University. https://tel.archives-ouvertes.fr/tel-00221368
  • 37. Sajadi P., Singh A., Mukherjee S., Sang Y.F., Chapi K., Salari M. 2020. Drainage network extraction and morphometric analysis in an Iranian basin using integrating factor analysis and geospatial techniques. Geocarto Int, 1–30. https://doi.org/10.1080/10106049.2020.1750060
  • 38. Snelder T.H., Lamouroux N., Leathwick J.R., Pella H., Sauquet E., Shankar U. 2009. Predictive mapping of the natural flow regimes of France. J Hydrol, 373(1–2), 57–67. https://doi.org/10.1016/j.jhydrol.2009.04.011
  • 39. Sreedevi P.D., Subrahmanyam K., and Ahmed S. 2004. The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environmental Geology, 47, 412–420. https://doi.org/10.1007/s00254-004-1166-1
  • 40. Strahler A.N. 1964. Quantitative geomorphology of drainage basin and channel networks. In: V.T. Chow (Ed.), Handbook of applied hydrology. Mc-Graw Hill Book, New York, 40–74.
  • 41. Tairi A. 2021. Application de la géomatique à la gestion des risques naturels en zones montagneuses: Modélisation des aléas des mouvements de terrain et d’érosion hydrique au niveau du bassin versant de Tifnoute (Atlas-Maroc). Ph.D Dissertation, Ibn Zohr University.
  • 42. Tixeront M. 1974. Carte géologique et minéralisations du Couloir d’Argana, Haut Atlas occidental, 1/100 000. Notes Mém Serv Géol Maroc, 205.
  • 43. Tucker G., Lancaster S., Gasparini N., Bras R. 2001. The Channel-Hillslope Integrated Landscape Development Model (CHILD). (In: Harmon, R.S., Doe, W.W. (eds)). Landscape Erosion and Evolution Modeling. Springer, Boston, MA, pp 349–388. https://doi.org/10.1007/978-1-4615-0575-4_12
  • 44. Vijith H., Prasannakumar V., Sharath Mohan M.A., Ninu Krishnan M.V., Pratheesh P. 2017. River and basin morphometric indexes to detect tectonic activity: a case study of selected river basins in the South Indian Granulite Terrain (SIGT). Physical Geography, 38(4), 360–378. https://doi.org/10.1080/02723646.2017.1283478
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f646be0-ac4f-46a0-907d-e0554411f0b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.