Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
SCOPUS jako meta-źródło wiedzy o uszkodzeniach łopatek turbin w aspekcie projektowania ekspertowego systemu diagnostycznego
Języki publikacji
Abstrakty
The paper presents the concept of using the Scopus as a meta-source of knowledge about turbine blade damage in the aspect of designing an expert diagnostic system. In the first stage, the search was limited to the scope of the general term "turbine engine", followed by a refinement of the search terms within the area of rotary machines components degradation including their construction, manufacturing, repair technology and diagnostic methods. By using EndNote software in semi-automatic mode, specific issue groups have been designated. In the second stage, a query focused on the main causes of turbine blade damage and diagnostic methods was proposed. Using the Scopus-based search and archiving tools, one can systematically update the knowledge.
W artykule przedstawiono koncepcję wykorzystania bazy Scopus jako meta-źródła wiedzy o uszkodzeniach łopatek turbin w aspekcie projektowania ekspertowego systemu diagnostycznego. W pierwszym etapie przegląd publikacji ograniczono do zakresu określonego ogólnym hasłem „turbine engine” a następnie doprecyzowano przeszukiwanie wprowadzając hasła szczegółowe z obszaru degradacji elementów maszyn wirnikowych z uwzględnieniem ich konstrukcji, technologii wytwarzania i naprawy oraz metod diagnozowania. Stosując oprogramowanie EndNote w trybie pół-automatycznym wyznaczono grupy publikacji dotyczących zagadnień szczegółowych co ułatwia wykorzystanie wyników kwerendy w procesie tworzenia ekspertowego systemu diagnostycznego. W drugim etapie zaproponowano kwerendę skoncentrowaną na głównych przyczynach uszkodzeń łopatek turbin oraz metodach diagnozowania. Wykorzystanie zawartych w bazie Scopus mechanizmów przeszukiwania oraz archiwizacji zbioru wyników umożliwia systematyczną aktualizację pozyskanej wiedzy.
Czasopismo
Rocznik
Tom
Strony
145--162
Opis fizyczny
Bibliogr. 40 poz., tab.
Twórcy
autor
- Instytut Techniczny Wojsk Lotniczych, Air Force Institute of Technology
autor
- Instytut Techniczny Wojsk Lotniczych, Air Force Institute of Technology
autor
- Instytut Techniczny Wojsk Lotniczych, Air Force Institute of Technology
Bibliografia
- [1] Abbas, M. and G.J. Vachtsevanos. A system-level approach to fault progression analysis in complex engineering systems. in Annual Conference of the Prognostics and Health Management Society, PHM 2009. 2009.
- [2] Bano, N., A. Fahim, and M. Nganbe. Fatigue crack initiation life prediction of IN738 using artificial neural network. 2010.
- [3] Blachnio, J. and M. Bogdan, A non-destructive method to assess condition of gas turbine blades, based on the analysis of blade-surface images. Russian Journal of Nondestructive Testing, 2010. 46(11): p. 860-866.
- [4] Błachnio, J., Analysis of technical condition assessment of gas turbine blades with non-destructive methods. Acta Mechanica et Automatica, 2013. 7(4): p. 203-208.
- [5] Błachnio, J., Capabilities to assess health/maintenance status of gas turbine blades with non-destructive methods. Polish Maritime Research, 2014. 21(4): p. 41-47.
- [6] Błachnio, J., The effect of changing loads affecting the martensite steel on its structure and the Barkhausen noise level. NDT and E International, 2008. 41(4): p. 273-279.
- [7] Błachnio, J., The effect of high temperature on the degradation of heat-resistant and high-temperature alloys, in Solid State Phenomena. 2009. p. 744-751.
- [8] Błachnio, J., M. Bogdan, and D. Zasada, Increased temperature impact on durability of gas turbine blades. Eksploatacja i Niezawodnosc, 2017. 19(1): p. 48-53.
- [9] Błachnio, J., J. Dutkiewicz, and A. Salamon, The effect of cyclic deformation in a 13% Cr ferritic steel on structure and Barkhausen noise level. Materials Science and Engineering A, 2002. 323(1-2): p. 83-90.
- [10] Błachnio, J., et al., Assessment of technical condition demonstrated by gas turbine blades by processing of images for their surfaces. Journal of Konbin, 2012. 21(1): p. 41-50.
- [11] Błachnio, J., et al., The attempt to assess the technical condition of a gas turbine blade when information on its operating condition is limited. Journal of Konbin, 2014. 30(1): p. 75-86.
- [12] Bonnand, V., D. Pacou, and F. Gallerneau, Fatigue of anisotropic materials - A new experimental device for multiaxial thermo-mechanical fatigue. Materialpruefung/Materials Testing, 2004. 46(6): p. 301-305.
- [13] Carter, B.J., et al., Three-dimensional simulation of fretting crack nucleation and growth. Engineering Fracture Mechanics, 2012. 96: p. 447-460.
- [14] Cernuschi, F., et al., Solid particle erosion of standard and advanced thermal barrier coatings. Wear, 2016. 348-349: p. 43-51.
- [15] Ding, J., et al., Fatigue crack growth from foreign object damage under combined low and high cycle loading. Part I: Experimental studies. International Journal of Fatigue, 2007. 29(7): p. 1339-1349.
- [16] Dionne, S., T. Lang, and J. Li. Examination of fatigue crack origins in aircraft turbine blades using serial sectioning techniques. 2009.
- [17] Gao, C., W.Q. Meeker, and D. Mayton, Detecting cracks in aircraft engine fan blades using vibrothermography nondestructive evaluation. Reliability Engineering and System Safety, 2014. 131: p. 229-235.
- [18] Gu, Y. and C. Tao, Ultra-high cycle fatigue behavior of DZ125 superalloy used in turbine blades. 2016, Trans Tech Publications Ltd. p. 96-103.
- [19] Hill, M.D., D.P. Phelps, and D.E. Wolfe. Corrosion resistant thermal barrier coating materials for industrial gas turbine applications. 2009.
- [20] Khan, Z., et al., Investigation of Intergranular Corrosion in 2nd stage gas turbine blades of an aircraft engine. Engineering Failure Analysis, 2016. 68: p. 197-209.
- [21] Kirschner, M., et al. Erosion testing of thermal barrier coatings in a high enthalpy wind tunnel. 2014. American Society of Mechanical Engineers (ASME).
- [22] Klocke, F., et al. Results of Surface Integrity and Fatigue Study of PECM and PEO Processed γ-TiAl for Turbine Applications. 2016. Elsevier B.V.
- [23] Kumar, A., et al. Experimental validation of statistical algorithm for diagnosis of damage fault. 2009.
- [24] Kumari, S., D.V.V. Satyanarayana, and M. Srinivas, Failure analysis of gas turbine rotor blades. Engineering Failure Analysis, 2014. 45: p. 234-244.
- [25] Liu, H., et al. Fatigue crack growth of multiple load path structure under combined fatigue loading: Part II experiment study. 2014. American Society of Mechanical Engineers (ASME).
- [26] Ma, N.N., Statistical analysis of the failure modes and causes of the failure blades of the aviation engine. 2013. p. 2097-2100.
- [27] Mishra, R.K., et al., Investigation of HP turbine blade failure in a military turbofan engine. International Journal of Turbo and Jet Engines, 2015. 2015.
- [28] Naeem, M., Implications of turbine erosion for an aero-engine's high-pressureturbine blade's low-cycle-fatigue life-consumption. Journal of Engineering for Gas Turbines and Power, 2009. 131(5).
- [29] Ogiriki, E.A., Y.G. Li, and T. Nikolaidis. Prediction and analysis of impact of tbc oxidation on gas turbine creep life. 2015. American Society of Mechanical Engineers (ASME).
- [30] Ogiriki, E.A., Y.G. Li, and T. Nikolaidis, Prediction and Analysis of Impact of Thermal Barrier Coating Oxidation on Gas Turbine Creep Life. Journal of Engineering for Gas Turbines and Power, 2016. 138(12).
- [31] Pambudi, M.J., E.A. Basuki, and D.H. Prajitno. Improving hot corrosion resistance of two phases intermetallic alloy α2-Ti3Al/γ-TiAl with enamel coating. in AIP Conference Proceedings. 2017.
- [32] Shi, D.Q., et al., Constitutive modelling and creep life prediction of a directionally solidified turbine blade under service loadings. Materials at High Temperatures, 2015. 32(5): p. 455-460.
- [33] Sozańska, M., et al., Degradation of microstructure after service in ZhS6K superalloy with diffusive aluminide coating. 2012, Trans Tech Publications Ltd. p. 143-146.
- [34] Tong, J., et al., Assessment of service induced degradation of microstructure and properties in turbine blades made of GH4037 alloy. Journal of Alloys and Compounds, 2016. 657: p. 777-786.
- [35] Walter, K. and W. Greaves. Life assessment of gas turbine components using nondestructive inspection techniques. 1997. American Society of Mechanical Engineers (ASME).
- [36] Wang, R., et al., Thermomechanical fatigue failure investigation on a single crystal nickel superalloy turbine blade. Engineering Failure Analysis, 2016. 66: p. 284-295.
- [37] Wanzek, H., High-temperature corrosion on turbine rotor blades. Praktische Metallographie/Practical Metallography, 2012. 49(9): p. 588-596.
- [38] Weser, S., et al. Advanced experimental and analytical investigations on combined cycle fatigue (CCF) of conventional cast and single-crystal gas turbine blades. 2011.
- [39] Woźny, P. and J. Błachnio, Analysis of Damage Arising from Exploitation of the Aircraft. Journal of Konbin, 2014. 32(1): p. 5-18.
- [40] Zhao, L. and P. Au. The microstructure and high-temperature erosion behavior of an aluminide-coated turbine blade. 2013.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f63f085-61a6-4c4a-b8b4-900ff038b7aa