PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selective flotation separation of chalcopyrite and sphalerite by thermal pretreatment under air atmosphere

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal pretreatment was performed to enhance the flotation separation of chalcopyrite and sphalerite under the air atmosphere for the first time. Microflotation experiment showed that the floatability of chalcopyrite vanished after thermal pretreatment at above 170℃. By contrast, the floatability of sphalerite was well maintained with a flotation recovery of 90%. In artificial mixed mineral flotation experiments, the separation of sphalerite and chalcopyrite was successfully realized by thermal pretreatment. Results of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses indicated that the chalcopyrite surface was oxidized dramatically at 170℃, and hydrophilic species such as sulfate (SO42-), oxides (CuO and Fe2O3), and hydroxyl species (Fe(OH)3) were formed on the surface. Hence, the adsorption of potassium butyl xanthate on chalcopyrite decreased significantly after thermal pretreatment. The reason for the higher oxidation speed of chalcopyrite than that of sphalerite was also analyzed.
Słowa kluczowe
Rocznik
Strony
305--314
Opis fizyczny
Bibliogr. 50 poz., rys., wykr.
Twórcy
autor
  • Jiangxi University of Science and Technology
  • School of Chemical Engineering and Technology, China University of Mining and Technology
autor
  • Jiangxi University of Science and Technology
  • Jiangxi University of Science and Technology
autor
  • Jiangxi University of Science and Technology
autor
  • Jiangxi University of Science and Technology
autor
  • Jiangxi University of Science and Technology
Bibliografia
  • ANSARI, A., PAWLIK, M., 2007. Floatability of chalcopyrite and molybdenite in the presence of lignosulfonates. part ii. hallimond tube flotation. Minerals Engineering, 20, 609-616.
  • AHMADI, A., SCHAFFIE, M., MANAFI, Z., RANJBAR, M., 2010. Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor. Hydrometallurgy, 104(1), 99–105.
  • BULATOVIC, S.M., 2007. Handbook of flotation reagents: chemistry, theory and practice flotation of sulfide ores. Vol. 1: Flotation of Sulfide Ores, Elsevier Science.
  • CHEN J.-H., LAN, L.-H., LIAO X.-J., 2013. Depression effect of pseudo glycolythiourea acid in flotation separation of copper–molybdenum. Transactions of Nonferrous Metals Society of China, 23(3), 824-831.
  • CHEN, W., CHEN, T., BU, X.Z., CHEN, F.F., DING, Y.H., ZHANG, C.H., DENG, S., SONG, Y.H., 2019. The selective flotation of chalcopyrite against galena using alginate as a depressant. Minerals Engineering, 141, 105848.
  • CHIMONYO, W., FLETCHER, B., PENG, Y., 2020. The differential depression of an oxidized starch on the flotation of chalcopyrite and graphite. Minerals Engineering, 146, 106114.
  • CHANDRAPRABHA, M.N., NATARAJAN, K.A., 2006. Surface chemical and flotation behaviour of chalcopyrite and pyrite in the presence of acidithiobacillus thiooxidans. Hydrometallurgy, 83(1-4), 146-152.
  • CAO, M., LIU, Q., 2006. Reexamining the functions of zinc sulfate as a selective depressant in differential sulfide flotation--the role of coagulation. Journal of Colloid & Interface Science, 301(2), 523-531.
  • DÁVILA-PULIDO, G.I., URIBE-SALAS, A., ESPINOSA-GÓMEZ, R., 2011. Comparison of the depressant action of sulfite and metabisulfite for cu-activated sphalerite. International Journal of Mineral Processing, 101(1-4), 71-74.
  • DA SILVA, G.R., ESPIRITU, E.R.L., MOHAMMADI-JAM, S., WATERS, K.E., 2018. Surface characterization of microwave-treated chalcopyrite. Colloids & Surfaces A Physicochemical & Engineering Aspects, 555, 407-417.
  • DRZYMALA, J., KAPUSNIAK, J., TOMASIK, P., 2003. Removal of lead minerals from copper industrial flotation concentrates by xanthate flotation in the presence of dextrin. International Journal of Mineral Processing, 65(1), 147-155.
  • EKMEKÇI, Z., ASLAN, A., HASSOY, H., 2004. Effects of EDTA on selective flotation of sulphide minerals. Physicochem, Probl. Miner. Process. 38, 79–94.
  • HIRAJIMA, T., MIKI, H., WISNU SUYANTARA, G.P., MATSUOKA, H., ELMANDY, A.M., SASAKI, K., IMAIZUMI, Y., KUROIWA, S., 2017. Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation. Minerals Engineering, 100, 83-92.
  • FENG, B., GUO, Y.T., ZHANG, W.P., PENG, J.X., WANG, H.H., HUANG, Z.Q., ZHOU, X.W., 2019. Flotation separation behavior of chalcopyrite and sphalerite in the presence of locust bean gum. Minerals Engineering, 143, 105940.
  • GRANO, S.R., LAUDER, D.W., JOHNSON, N.W., SMART ST.C.R., RALSTON, J., 1991. Comparison of ethyl xanthate and diisobutyldithiophosphinate collectors for the lead roughing of the Hilton ore of Mount Isa Mines Ltd. In: Fifth Extractive Metallurgy Conference. Australasian Institute of Mining and Metallurgy Publisher, Parkville, pp. 203-210.
  • HIRAJIMA, T., MORI, M., ICHIKAWA, O., SASAKI, K., MIKI, H., FARAHAT, M., SAWADA, M., 2014. Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment. Minerals Engineering, 66-68, 102-111.
  • HUANG, X., HUANG, K., JIA, Y., WANG, S., CAO, Z., ZHONG, H., 2019. Investigating the selectivity of a xanthate derivative for the flotation separation of chalcopyrite from pyrite. Chemical Engineering Science, 205, 220-229.
  • KHMELEVA, T.N., SKINNER, W., BEATTIE, D.A., 2005. Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite. International Journal of Mineral Processing, 76(1-2), 43-53.
  • KHMELEVA, T.N., CHAPELET, J.K., SKINNER, W.M., BEATTIE, D.A., 2006. Depression mechanisms of sodium bisulphite in the xanthate-induced flotation of copper activated sphalerite. International Journal of Mineral Processing, 79(1), 61-75.
  • KASHANI, A.H.N., RASHCHI, F., 2008. Separation of oxidized zinc minerals from tailings: Influence of flotation reagents. Minerals Engineering, 21(12), 967-972.
  • KHOSO, S.A., YUE-HUA, H.U., FEI, L., GAO, Y., SUN, W., 2019. Xanthate interaction and flotation separation of H2O2- treated chalcopyrite and pyrite. Transactions of Nonferrous Metals Society of China, 29(12), 2604-2614.
  • LIU, G.Y., LU, Y.P., ZHONG, H., CAO, Z.F., XU, Z.H., 2012. A novel approach for preferential flotation recovery of molybdenite from a porphyry copper–molybdenum ore. Minerals Engineering, 36-38, 37-44.
  • LAI, H., DENG, J.S., WEN, S.M., WU, D.D., 2019. Homogenization phenomena of surface components of chalcopyrite and sphalerite during grinding processing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 578, 0123601.
  • LEJA, J., 1982. Surface Chemistry of Froth Flotation. Plenum, New York, pp. 644–645.
  • LI, M.Y., WEI, D.Z., SHEN, Y.B., LIU, W.G., LIANG, G.Q., 2015. Selective depression effect in flotation separation of copper-molybdenum sulfides using 2, 3-disulfanylbutanedioic acid, Trans. Nonferr. Met. Soc. China 25, 3126–3132.
  • LIU, Y., LIU, Q., 2004. Flotation separation of carbonate from sulfide minerals, ii: mechanisms of flotation depression of sulfide minerals by thioglycollic acid and citric acid. Minerals Engineering, 17(7-8), 865-878.
  • LIU, Q., ZHANG, Y.H., LASKOWSKI, J.S., 2000. The adsorption of polysaccharides onto mineral surfaces: an acid/base interaction. International Journal of Mineral Processing, 60(3), 229-245.
  • MAHAJAN, V., MISRA, M., ZHONG, K., FUERSTENAU, M.C., 2007. Enhanced leaching of copper from chalcopyrite in hydrogen peroxide–glycol system. Minerals Engineering, 20(7), 670-674.
  • MISRA, M., MILLER, J.D., SONG, Q.Y., 1985. The effect of SO2 in the flotation of sphalerite and chalcopyrite. In: Forssberg, K.S.E. (Ed.), Flotation of Sulphide Minerals, Developments in Miner. Process. Elsevier, Amsterdam, pp. 175-196.
  • MAY, F., HAMANN, S., QUADE, A., BRÜSER, V., 2017. Froth flotation improvement by plasma pretreatment of sulfide minerals, Miner. Eng. 113, 95-101.
  • OZUN, S., VAZIRI HASSAS, B., MILLER, J.D., 2019. Collectorless flotation of oxidized pyrite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 561, 349-356.
  • PANDA, S., AKCIL, A., PRADHAN, N., DEVECI, H., 2015. Current scenario of chalcopyrite bioleaching: a review on the recent advances to its heap-leach technology. Bioresource Technology, 196, 694-706.
  • PERES, A.E.C., 1979. The Interaction between Xanthate and Sulphur Dioxide in the Flotation of Copper–nickel Ores, PhD thesis. University of British Columbia.
  • QIN, W.Q., JIAO, F., SUN, W., WANG, X.J., LIU, B., WANG, J., ZENG, K., WEI, Q., LIU, K., 2013. Effects of sodium salt of n,n-dimethyldi-thiocarbamate on floatability of chalcopyrite, sphalerite, marmatite and its adsorption properties. Colloids & Surfaces A Physicochemical & Engineering Aspects, 421, 181-192.
  • SONG, S., ZHANG, X., YANG, B, LOPEZ-MENDOZA, A., 2012. Flotation of molybdenite fines as hydrophobic agglomerates. Separation and Purification Technology, 98, 451-455.
  • SARQUIS, P.E., MENENDEZ-AGUADO, J.M., MAHAMUD, M.M., DZIOBA, R., 2014. Tannins: the organic depressants alternative in selective flotation of sulfides. Journal of Cleaner Production, 84, 723-726.
  • SUYANTARA, G.P.W., 2018. Selective flotation of chalcopyrite and molybdenite using H2O2 oxidation method with the addition of ferrous sulfate. Minerals Engineering, 122, 312-326.
  • SIRIWARDANE, R.V., POSTON, J.A., 1990. Interaction of H2S with zinc titanate in the presence of H2 and CO. Applied Surface Science, 45(2), 131-139.
  • TAN, X., HE, F.Y., WU, W.G., 2010. Mineral processing technology on sandstone type lowgrade lead-zinc oxide ore. Nonferr. Met. 62 (2010) 115–122.
  • TANG, X., CHEN, Y., LIU, K., PENG, Q., ZENG, G., AO, M., LI, Z., 2020. Reverse flotation separation of talc from molybdenite without addition of depressant: Effect of surface oxidation by thermal pre-treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 594, 124671.
  • WISNU, S.G.P., TSUYOSHI, H., HAJIME, M., KEIKO, S., MASASHI, Y., ERI, T., SHIGETO, K., YUJI, I., 2018. Effect of fenton-like oxidation reagent on hydrophobicity and floatability of chalcopyrite and molybdenite. Colloids & Surfaces A Physicochemical & Engineering Aspects, 554, 34-48.
  • WANG, X., FORSSBERG, K.S.E., 1996. The solution electrochemistry of sulfide-xanthate-cyanide systems in sulfide mineral flotation. Minerals Engineering, 9(5), 527-546.
  • WANG, Z., QIAN, Y., XU, L.H., DAI, B., XIAO, J.H., FU, K., 2015. Selective chalcopyrite flotation from pyrite with glycerine-xanthate as depressant. Minerals Engineering, 74, 86-90.
  • VELÁSQUEZ, P., GÓMEZ, H., RAMOSBARRADO, J.R., LEINEN, D., 1998. Voltammetry and xps analysis of a chalcopyrite cufes 2 electrode. Colloids & Surfaces A Physicochemical & Engineering Aspects, 140(1–3), 369-375.
  • YAHYA, N., RAMLI, A., MOHAMAD, N.M., 2009. Synthesis and characterization of zinc oxide nanoparticles prepared via precipitation and self-combustion methods. Am. Inst. Phys. (2009) 401–405.
  • YANG, B., YAN, H., ZENG, M., HUANG, P., TENG, A., 2020. A novel copper depressant for selective flotation of chalcopyrite and molybdenite. Minerals Engineering, 151, 106309.
  • YIN, Z., SUN, W., HU, Y., ZHAI, J., QINGJUN, G., 2017. Evaluation of the replacement of NaCN with depressant mixtures in the separation of copper–molybdenum sulphide ore by flotation. Separation and Purification Technology, 173, 9-16.
  • ZHANG, Q., XU, Z., BOZKURT, V., FINCH, J.A., 1997. Pyrite flotation in the presence of metal ions and sphalerite. International Journal of Mineral Processing, 52(2-3), 187-201.
  • ZHANG, Y., CAO, Z., CAO, Y., SUN, C., 2013, FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces. Journal of Molecular Structure, 1048, 434-440.
  • ZHOU, H.P., ZHANG, Y.B., TANG, X.K., CAO, Y.J., LUO, X.P., 2020. Flotation separation of fluorite from calcite by using psyllium seed gum as depressant. Minerals Engineering, 159, 106514.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f613b42-d9f0-454e-8939-256edb7e374e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.