Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study is intended to make a first estimate of the exposure of the two Polish largest ports – Gdańsk and Gdynia, localized in the Gulf of Gdańsk – to threats from storm extremes. These ports are elements of the Polish critical infrastructure and presented analysis is one of the tasks related to critical infrastructure protection. Hypothetical extreme meteorological conditions have been defined based on 138-year NOAA data and assumed wave fields for those conditions have been generated. Using HIPOCAS project database the 21 extreme historical storms over the period 1958–2001 were selected to simulate realistic conditions in the vicinity of the ports. The highest significant wave height was found to be nearly 4 m in the vicinity of Port of Gdańsk and nearly 2 m in the vicinity of Port of Gdynia. A future intensification of these wave conditions should be considered due to the climate change and sea level rise.
Rocznik
Tom
Strony
29--36
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Oceanography, University of Gdańsk, Gdańsk, Poland
autor
- Institute of Oceanography, University of Gdańsk, Gdańsk, Poland
autor
- Institute of Oceanography, University of Gdańsk, Gdańsk, Poland
Bibliografia
- [1] Booij, N., Holthuijsen, L. H. & Ris R. C. (1996). The SWAN wave model for shallow water. Proceedings of the 25th International Conference on Coastal Engineering. Orlando, USA.
- [2] Cieślikiewicz, W. & Herman, A. (2001). Wind wave modelling over the Baltic Sea and the Gulf of Gdańsk. Inż. Mor. Geotech 22, 4, 173-184 (in Polish).
- [3] Cieślikiewicz, W. & Herman, A. (2002). Wave and current modelling over the Baltic Sea. Proc. 28th Intern. Conf. Coastal Engng Conf., ICCE 2002, Cardiff, Wales. 176-187.
- [4] Cieślikiewicz, W., Paplińska-Swerpel, B. & Guedes Soares, C. (2004). Multi-decadal wind wave modelling over the Baltic Sea. In: Smith, Jane McKee (Ed.), Coast. Engng. World Scientific. 778-791.
- [5] Cieślikiewicz, W. & Paplińska-Swerpel, B. (2008). A 44-year hindcast of wind wave fields over the Baltic Sea. Coast. Engng. 55, 894-905.
- [6] Compo, G. P., Whitaker, J. S., Sardeshmukh, P. et al. (2011). Review Article - The Twentieth Century Reanalysis Project. Q.J.R. Meteorol. Soc 137, 1-28.
- [7] Feser, F., Weisse, R. & von Storch, H. (2001). Multi-decadal atmospheric modelling for Europe yields multi-purpose data. Eos 82, 28.
- [8] HELCOM. (2013). Climate change in the Baltic Sea area: HELCOM thematic assessment in 2013. In: Baltic Sea environment proceedings 137.
- [9] Holthuijsen, L. H., Booij, N. & Ris, R. C. (1993). A spectral wave model for the coastal zone. Proceedings of the 2nd International Symposium on Ocean Wave Measurement and Analysis, New Orleans, USA.
- [10] Jacob, D. & Podzun, R. (1997). Sensitivity studies with the regional climate model REMO. Meteorol. Atmos. Phys 63, 119-129.
- [11] Kalnay, E., Kanamitsu, M., Cistler, R. et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc 77, 437-471.
- [12] Leppäranta, M. & Myrberg, K. (2009). Physical Oceanography of the Baltic Sea. Springer-Verlag Berlin Heidelberg.
- [13] Massel, R. (1989). Hydrodynamics of Coastal Zones. Elsevier Oceanography 335.
- [14] Paplińska, B. (1999). Wave analysis at Lubiatowo and in the Pomeranian Bay based on measurements from 1997/1998 - comparison with modelled data (WAM 4 model). Oceanologia 41, 2, 241-254.
- [15] Różyński, G. (2010). Wave Climate in the Gulf of Gdańsk vs. Open Baltic Sea near Lubiatowo, Poland. Archives of Hydro-Engineering and Environmental Mechanics 57, 2, 167-176.
- [16] Seifert, T. & Kayser, B. (1995). A High Resolution Spherical Grid Topography of the Baltic Sea. Meereswissenschaftliche Berichte, 9. Institutfür Ostseeforschung, Warnemünde. 72-88.
- [17] Soomere, T., Behrens A., Tuomi, L. et al. (2008). Wave conditions in the Baltic Proper and inthe Gulf of Finland during windstorm Gudrun. Natural Hazards and Earth System Science, Copernicus Publications on behalf of the European Geosciences Union. 8, 1, 37-46.
- [18] Tsinker, G. (1997). Handbook of Port and Harbor Engineering: Geotechnical and Structural Aspects. Springer 1054.
- [19] The BACC II Author Team. (2015). Second Assessment of Climate Change for the Baltic Sea Basin. Springer International Publishing.
- [20] Urbański, J., Grusza, G. & Chlebus, N. (2008). A GIS-based WFD oriented typology of shallow micro-tidal soft bottom using wave exposure and turbidity mapping. Estuarine, Coastal and Shelf Science 78, 1, 27-37.
- [21] Von Storch, H., Langenberg, H. & Feser, F. (2000). A spectral nudging technique for dynamical downscaling purposes. Mon. Weather Rev. 128, 3664-3673.
- [22] WAMDI Group. (1988). The WAM model - A Third Generation Ocean Wave Prediction Model. J. Fluid Mech 70, 113-126.
- [23] Zeidler, R. B. (Ed.) (1992). Assessment of the vulnerability of Poland`s coastal areas to sea level rise. H*T*S*. Gdańsk. 165.
- [24] Zeidler, R. B., Wróblewski, A., Miętus, M. et al. (1995). Wind, wave and storm surge regime at the Polish Baltic coast. Polish coast: past, present, future. J. Coastal Res 22, 33-55.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f5e100b-b888-4a90-8c2b-5d12b04cf5c2