PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Game-based Decentralized Charging Control for Large Populations of Electric Vehicles

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Sterowanie ładowaniem baterii dużej populacji pojazdów elektrycznych bazujące na teorii gier
Języki publikacji
EN
Abstrakty
EN
This paper proposes a game-based decentralized charging control strategy for large populations of electric vehicles (EVs). Assuming all EV owners make their own charging strategy according to the electricity price and the total electricity demand of the day before, the owners can be guided to actively participate in the game by a set of electricity pricing mechanism. The existence of Nash equilibrium and the global optimum (or ‘Valley-filling’) of the charging strategy are verified. Simulation results demonstrate the convergence to the Nash equilibrium within a few iterations.
PL
W artykule zaproponowano strategię ładowania dla dużej populacji pojazdów elektrycznych bazująca na teorii gier. Strategia wykorzystuje informacje o cenie energii i prognozowanym zapotrzebowaniu. Zweryfikowano metody optymalizacji.
Rocznik
Strony
252--255
Opis fizyczny
Bibliogr. 19 poz., wykr.
Twórcy
autor
  • School of Automation, Beijing Institute of Technology, Beijing
autor
  • School of Automation, Beijing Institute of Technology, Beijing
autor
  • School of Automation, Beijing Institute of Technology, Beijing
autor
  • School of Automation, Beijing Institute of Technology, Beijing
autor
  • Shenyang Institute of Engineering
Bibliografia
  • [1] EPRI, Environmental Assessment of Plug-In Electric Vehicles. Electric Power Research Institute: Palo Alto, 2007.
  • [2] Committee on assessment of resource needs for fuel cell and hydrogen technologies, national research council, Transitions to alternative transportation technologies-plug-in hybrid electric vehicles, the national academies press, 2010.
  • [3] The Economic and Commercial Office of the Chinese Embassy in Germany website [Online]. Available: http://de.mofcom.gov.cn/aarticle/jmxw/201202/20120207970407.html.
  • [4] S. Rahman, G. Shrestha. An investigation into the impact of electric vehicle load on the electric utility distribution system. IEEE Transactions on Power Delivery, 8 (1993) 591-597.
  • [5] L. Kelly, A. Rowe, P. Wild. Analyzing the impacts of plug-in electric vehicles on distribution networks in British Columbia. Proceedings of Electrical Power & Energy Conference, (2009) 1-6.
  • [6] F. Koyanagi, Y. Uriu. Modeling power consumption by electric vehicles and its impact on power demand. Electrical Engineering in Japan, 120 (1997) 40-47.
  • [7] L. Cheng, H. Zhou, F. Sun, et.al.. Study on intelligent control strategy of battery-electric bus based on the fuzzy comprehensive evaluation method. Proceedings of the 2009 WRI Global Congress on Intelligent Systems, 2 (2009) 328-332.
  • [8] S. Shao, T. Zhang, M. Pipattanasomporn, S. Rahman. Impact of TOU rates on distribution load shapes in a smart grid with PHEV penetration. Proceedings of Transmission and Distribution Conference and Exposition, (2010) 1-6.
  • [9] K. Clement, E. Haesen, J. Driesen. Coordinated charging of multiple plug-in hybrid electric vehicles in residential distribution grids. Proceedings of Power Systems Conference and Exposition, (2009) 1-7.
  • [10] E. Sortomme, M. M. Hindi, S. D. J. MacPherson, S. S. Venkata. Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses. IEEE transactions on Smart Grid, 2 (2011) 198-205.
  • [11] M.C. Caramanis, J.M. Foster. Coupling of Day Ahead and Real-Time Power Markets for Energy and Reserves Incorporating Local Distribution Network Costs and Congestion. Proceedings of 48th Annual Allerton Conference on Communication, Control, and Computing, (2010) 42-49.
  • [12] Z. Ma, D. Callaway, I. Hiskens. Decentralized Charging Control for Large Populations of Plug-in Vehicles. Proceedings of 49th Conference on Decision and Control, (2010) 15-17,.
  • [13] Z. Ma, D. Callaway, I. Hiskens. Decentralized charging control for large populations of plug-in electric vehicles: Application of the nash certainty equivalence principle. Proceedings of the 2010 IEEE Multi-Conference on Systems and Control, Yokohama, Japan, (2010) 191–195.
  • [14] Z. Ma, D. Callaway, I. Hiskens. Decentralized charging control of large populations of plug-in electric vehicles. Accepted by IEEE Trans. on Contr. Syst. Tech., 2011.
  • [15] N. John. Non-Cooperative Games. The Annals of Mathematics, 54 (1951) 286-295.
  • [16] K. Border. Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge, U.K.: Cambridge University Press, 1985.
  • [17] D. Smart. Fixed Point Theorem, London, U.K., Cambridge University Press, 1974.
  • [18] C. Daskalakis, P. Goldberg, C. Papadimitriou. The complexity of computing a Nash equilibrium. SIAM Journal on Computing, 39 (2009) 195-259.
  • [19] S. Fischer, H. Racke, B. Vocking. Fast convergence to Wardrop equilibria by adaptive sampling methods. Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, Seattle, WA, (2006) 653–662.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f5dcea1-a941-4111-ad57-de8d55348118
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.