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Abstract

In the paper we develop an algorithm based on the Parzen kernel estimate for detection
of sudden changes in 3-dimensional shapes which happen along the edge curves. Such
problems commonly arise in various areas of computer vision, e.g., in edge detection,
bioinformatics and processing of satellite imagery. In many engineering problems abrupt
change detection may help in fault protection e.g. the jump detection in functions describ-
ing the static and dynamic properties of the objects in mechanical systems. We developed
an algorithm for detecting abrupt changes which is nonparametric in nature and utilizes
Parzen regression estimates of multivariate functions and their derivatives. In tests we
apply this method, particularly but not exclusively, to the functions of two variables.
Keywords: edge curve detection, regression function, nonparametric estimation

1 Introduction

Sudden changes are not common in nature but once
they happen they may indicate the onset of impor-
tant events with far reaching and often catastrophic

consequences, e.g., earthquakes, tsunami waves,
heart attacks, stock market crashes, etc. In engi-
neering and signal processing it is important to pre-
dict and detect sudden changes. From the math-
ematical standpoint, change detection problem is
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equivalent to the detection of discontinuity. An-
other question is how to properly qualify or clas-
sify the observed change. In, e.g. [9] one may find
simple classification of basic change types:

– anomalies (or glitches) - accidental, often sin-
gle, outlier aberrations or errors. Typically they
are less important and can be ignored and easily
removed by filtering or correction;

– trends, drifts and gradual changes that cannot be
easily observed. They usually require long term
observations and are rarely analyzed in the cur-
rent literature;

– narrow, steep or abrupt changes, called edges.

They represent significant aberrations or deviations
from the steady state observed thus far. They are
usually important and require the proper attention
(e.g. in medicine, seismology, weather forecasting,
stock market, network security and others);
The problem of change detection in multidimen-
sional space typically requires discovering the
curves defined by multidimensional functions. This
is more complex task, which requires significant
computer resources like memory, processor power,
and efficient (and often parallel) computations. In
the article we develop a novel algorithm for de-
tection of discontinuities of multidimensional func-
tions based on Parzen kernel estimation of functions
and their derivatives. We describe in detail how the
proposed algorithm can be used to recovery of the
edge curves on 3-dimensional surfaces.

2 Brief review of edge detection re-
search

Edge detection term commonly refers to one-
dimensional case of detection of an abrupt, narrow
or steep change, i.e., when function value suddenly
changes resulting in jump discontinuity at the jump
point in the plot of the function. The problem of
determining where or when the change occurred
is equivalent to finding this jump point. In case
of multi-dimensional functions the jump edge be-
comes a spatial curve. We can either estimate this
curve (or its scatter plot) or its projection on a sub-
space.

There are known several solutions for narrow
changes detection problem. For a survey of a
plethora of edge detection techniques in computer
vision we refer the reader to, e.g., [23, 4, 46]. Next
we discuss only the most common ones.
First-order methods based on gradients computa-
tions include Sobel, Prewitt, Robert’s [37] and
Canny [6] algorithms. Another approach is based
on detection of zero-crossing of the second-order
derivative of the image smoothed by Laplacian or
Gaussian filtering [36]. Note that, in case of dig-
ital images the design points typically form uni-
form grid. This condition is difficult to fulfill in
some other applications. It is not easy to generalize
such methods to situations with more general de-
sign points [40]. One can use neighboring observa-
tions and approximate the derivatives by computing
their differences.

In case of time series data the most common
approaches are based on density or distribution es-
timation [9].

Change detection can also be accomplished by
means of more general criterion such as mean
square error, Kolmogorov-Smirnov or Wilcoxon
tests (see e.g. [7]). The main idea behind the sta-
tistical tests is to form a special function of the data
called test statistic which is sensitive to significant
changes in the data. If data changes lead to distri-
butional changes they can be detected by tracking
the distance between distributions and relative en-
tropies commonly called the Kullback-Leibler dis-
tance [33]. These techniques are applicable for
moderate data volumes, and they are often appli-
cable off-line, however they are not applicable di-
rectly to data streams. A popular technique for de-
tecting change in data streams is likelihood track-
ing in the adjacent sliding time windows. An in-
teresting idea for detecting change in data streams
has been proposed in [16]. The data in the neigh-
boring time windows are clustered by k-means al-
gorithm and discrete distributions for each cluster
are estimated. The the Kullback-Leibler divergence
between these distributions is tracked and sudden
change is detected when the divergence approaches
value 1.

A compromise semi-parametric approach
falling between parametric Hoteling detector and
non-parametric Kulback-Leibler divergence ap-
proach was also investigated in [16], where the
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authors used Mahalanobis distance and Gaussian
mixtures in their log-likelihood detector.

An entirely new approach for edge detection has
been presented in [41]. It is based on nonparamet-
ric regression estimation by radial basis functions
(RBF). It uses the scalable radial kernels K(x,y) :=
Φ(x− y) where Φ is a radial function, defined on
Rd . Since K is a symmetric kernel it can be re-
placed by Φ(r), where r = ∥·∥ is the distance norm
and Φ : [0,∞) → ℜ is a scalar function of a sin-
gle non-negative real variable. In [41] were used
the Wendland kernels of polynomials with even or-
der of smoothness. Kernels on Rd can be scaled
by the positive factor delta in the following way:
K(x,y,δ) := K

( x
δ ,

y
δ
)
, ∀x,y ∈ Rd . The RBF ap-

proach belongs to the kernel-type methods.

The shape parameter δ controlling interpola-
tion accuracy and stability of the algorithm can
be adjusted experimentally. The main idea be-
hind the kernel approach is to interpolate the data
with radial kernels and then estimate the coeffi-
cients of the interpolation using some cardinal func-
tions. In Fourier series analysis a well-known phe-
nomenon called Gibbs phenomenon happens when
jump discontinuity of the approximated function
gives rise to persistent high frequency oscillations
in the Fourier series near the jump point. Fourier
coefficients corresponding to these large frequen-
cies take large absolute values and a suitable thresh-
olding strategy could be used to detect the jump.

Kernel methods belong to the class of nonpara-
metric approaches used when the functional form of
underlying distributions or densities are unknown.

The approach based on regression analysis has
evolved over the years to become a popular tool
in classification and modelling of objects, forecast-
ing of phenomena, and in machine learning, where
neural networks, fuzzy sets and genetic algorithms
(e.g. [44]) dominate the field. Edge detection tech-
niques based on kernel regression estimation have
also been studied by Qiu in [39, 40]. The method-
ology described in this article is applicable in di-
verse applications such as classification, computer
vision, diagnostics, etc. (see e.g. [25, 26, 27, 34].
Numerous regression models applied to stream data
are described in [12, 13, 14, 30].

In this paper, we introduce an original approach

for the challenging problem of abrupt change de-
tection in shapes defined by multidimensional func-
tions, namely multi-dimensional edge detection
problem. The algorithms are described in de-
tails and are applicable to two-dimensional func-
tions. For the sake of better exposition of the
proposed approach we restricted our considerations
to three-dimensional space, but its extension to d-
dimensional space seems obvious.

We adopt the nonparametric Parzen kernel
method for estimation of unknown multidimen-
sional functions and their derivatives which lead
the novel algorithms for jump detection from noisy
measurements.

The proposed methodology allows to compute
edge spatial curves along which the sudden changes
happen and to track function changes along the
edges. In the course of estimating the location of
abrupt changes we utilize kernel derivatives which
are easy to compute and our algorithms are vali-
dated in simulation experiments. Finally, our ap-
proach scales up easily and does not require uni-
form distribution of sampling points.
The problem of edge localization has been thor-
oughly investigated over several decades. There is
vast literature on the topic, e.g., [1, 2, 5, 11, 29, 31,
32, 35, 38, 47, 51, 53]. Preliminary study concern-
ing application of Parzen kernels to detecting sud-
den changes has been presented in [20].

3 New approach for multidimen-
sional edge curve detection

Due to the ignorance of precise mathematical equa-
tions numerous phenomena can be described by re-
gression models. Also the abrupt change detection
problem can be solved by the regression analysis
approach for multidimensional case. Then the se-
quence of points of probable abrupt changes can
take form of a curve along which regression func-
tion R(·) is discontinuous. High-dimensional space
in obvious way is computationally very demanding
and appropriate algorithms are complex.

The aim of our work is to derive a new, sim-
ple method of detecting step changes of multivari-
ate functions based on kernel-type estimators for
functions and their derivatives. We used multivari-
ate Parzen kernel algorithms applied to a set of
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noisy measurements. Theoretical analysis of the
Parzen method in so-called random design case and
of other nonparametric regression estimates tech-
niques, see, e.g., [28, 15].

We consider the model in the form:

yi = R(xi)+ εi, i = 1, ...,n (1)

where xi’s are deterministic input vectors, xi ∈ Rd ,
yi is the scalar random output, and εi is an additive
random noise with zero mean and bounded vari-
ance. Our problem at hand is the fixed-design re-
gression problem, see, e.g., [15]. Note that math-
ematical form of function R(·) is entirely unknown
so, the problem of finding its value at any point x
is more difficult than in parametric estimation prob-
lem.

As the estimator of unknown function R(·) at
point x we use the Parzen kernel based algorithm of
the integral type

R̂(x) = hn
−d

n

∑
i=1

yi

∫

Di

K
(
∥x−u∥

hn

)
du (2)

where ∥x−u∥ denotes a norm or the distance func-
tion in d-dimensional space defined for points x and
u. So called smoothing parameter or bandwidth is
denoted as hn and it depends on the number of ob-
servations.
Next we partition the domain D of R into n disjunc-
tive nonempty sets Di and the measurements xi are
chosen from Di, i.e.: xi ∈ Di.

As an example consider one-dimensional case
D = [hn,1 − hn]. Then ∪Di = [0,1], Di ∩ D j = /0
for i ̸= j, the points xi are chosen from Di, i.e.:
xi ∈ Di. In particular, for uniform partition Di =
[hn +(i−1)h,hn + ih], i = 1, ...,n, where h = 1−2hn

n .
The set of input values xi is selected during the ex-
periment planning and data collection phase. This
can be, for instance, stock data for a certain period
of time, equally distant samples of a recorded ECG
signal, or internet activity on a specific TCP/IP port
on the server logs. A balanced representation of R
functions in domain D should be provided.

When mathematical forms describing object are
known the problem is to determine a set of unknown
parameters. Examples are, for instance, linear re-
gression and/or splines method and we say that is
the parametric approach. The nonparametric is ap-
plicable when no assumption on the mathematical

form of unknown function is imposed. But then
the experimenter should try to select the measure-
ment points in such a way as to represent the tested
function as accurately as possible. This is possi-
ble if we follow the assumptions stated in the con-
vergence theorems especially condition imposed on
the maximum diameter of Di. It has to converge to
zero whenever the number of observations n tends
to infinity (see e.g. [21, 17, 18]). Then we may
presume that the essential properties of R(·) are in
some sense embedded in the set of pairs (xi,yi).
K(·) is the kernel function satisfying the conditions:

K(t) = 0 for t /∈ (−τ,τ),τ > 0
τ∫

−τ
K(t)dt = 1

supt |K(t)|< ∞.

(3)

Without losing the generality of considerations we
choose the cosine kernel defined by:

K(t) =
{ π

4 cos
(π

2 t
)

f or t ∈ (−1,1)
0 otherwise.

(4)

The derivatives of order k are estimated by using
kernel derivatives. Note, that the cosine kernel (4)
is k times continuously differentiable function. In
one-dimensional case the k-th derivative estimate in
the fixed point x can be estimated by the algorithm:

R̂(k)(x) = hn
−1

n

∑
i=1

yi

∫

Di

K(k)
(

x−u
hn

)
du. (5)

In one-dimensional case for research of nonpara-
metric procedures in similar applications to ours re-
fer to [22, 19].

The main concept is to infer change dynamics
of an unknown regression function by analyzing the
form of the first derivative estimated from the sam-
ple. The rule is simple: the higher the first deriva-
tive the steeper the slope at a given point. Follow-
ing this idea we propose the estimator of the deriva-
tives described previously as a detector of abrupt
changes. The choice of the parameter hn plays a
vital role in algorithm performance and interpreta-
tion of results. When we choose the bigger the hn

then the level of smoothing is stronger, but then the
detection of the point becomes more difficult or im-
possible. Contrary, too small hn causes high oscil-
lations and consequently, the numerous sharp peaks
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in the estimates. Then deciding which peaks corre-
spond to real jump may be difficult. Good selec-
tion of bandwidth parameter hn is often data de-
pendent, see [52, 10, 3, 48, 50, 49]. An interest-
ing approach for bandwidth selection based on FFT
transform has been presented in [24]. Such algo-
rithms are applicable also when the measurements
are randomly noisy, thanks to their smoothing at-
tribute. The choice of bandwidth parameter hn is
deciding of accuracy of the estimation particularly
for derivatives. The choice of the kernel function is
not discussed here. The numerical experiments and
tests done by authors show that this is not a critical
matter in detection of abrupt changes.
There are two useful types of kernels, in multi-
dimensional estimation:

– radial kernel:

K
(
uT u

)
= c ·

√
uT u (6)

with, e.g., Euclidean norm, and

– product kernel:

K(x,u,hn)=
d

∏
p=1

K
(
|xp −up|

hn

)
=K

(
∥x−u∥

hn

)

(7)
where ∥·∥ is L1 norm.

The radial kernel is computationally more efficient.
But product kernels are often chosen for their sim-
plicity and computational efficiency, especially in
the need of differentiation of functions. So we ap-
ply in our method the product kernel (7).

Original regression function defined by eq.
(15)-(17)

Noisy measurements of the regression function

Regression function estimate

Figure 1. 3-D function, noisy measurements and
regression function estimate

The k-th derivative with respect to x j can be es-
timated by the formula:

R̂(k)
x j (x) = hn

−d
n

∑
i=1

yi

∫

Di

∂k

∂xk
j
K
(
∥x−u∥

hn

)
du (8)

Because of product type kernel used, finding the
derivative is easy and relies on differentiation of
only the one function component in the kernel, with
respect to specified coordinate. Next, the two-
dimensional case will be described and analyzed in
detail.
The model under consideration is defined by:

yi = R([x1,x2]i)+ εi, i = 1, ...,n (9)

where [x1,x2]i is 2d-vector of variables x1 and x2.
The 2d Parzen kernel estimator of function R is de-
fined by:

R̂([x1,x2]) = hn
−2

n
∑

i=1
yi·

·
∫
Di

K
(

x1−u1
hn

)
·K

(
x2−u2

hn

)
du1du2

(10)
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Vertical projection 1. Derivative relative to x1
coordinate

Vertical projection 2. Derivative relative to x2
coordinate

Vertical projection - concatenated set of estimates

Figure 2. Vertical projections of edge curve.
Estimation using noisy measurements

Applying the cosine kernel (4) we obtain the
following estimation algorithm:

R̂([x1,x2]) =
π2

16 ·hn
−2

n
∑

i=1
yi·

·
∫
Di

cos
(

π(x1−u1)
2hn

)
I(−1,1)

(
x1−u1

hn

)
·

·cos
(

π(x2−u2)
2hn

)
I(−1,1)

(
x2−u2

hn

)
du1du2.

(11)

Basing on the fact |uk−xk| ≤ 1, whenever xk−hn ≤
uk ≤ xk + hn,k = 1,2 and trigonometric identity
sin(a)−sin(b)= 2sin((a−b)/2)cos((a+b)/2) we
can compute the integral in (11) analytically and ob-
tain:

R̂([x1,x2]) =
π2

4

n
∑

i=1
yi·

·
2
∏

k=1
sin

(
π(xk,i−xk,i+1)

4hn

)
· cos

(
π(2xk−xk,i−xk,i+1)

4hn

)
.

(12)
The estimators of the partial derivatives with respect
to coordinates x1 and x2, respectively are given by:

∂
∂x1

R̂([x1,x2]) =− π3

8hn

n
∑

i=1
yi ·

2
∏

k=1
sin

(
π(xk,i−xk,i+1)

4hn

)

·sin
(

π(2x1−xk,i−xk,i+1)
4hn

)
· cos

(
π(2x2−xk,i−xk,i+1)

4hn

)
.

(13)

∂
∂x2

R̂([x1,x2]) =− π3

8hn

n
∑

i=1
yi ·
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Vertical projection 1. Derivative relative to x1
coordinate

Vertical projection 2. Derivative relative to x2
coordinate

Vertical projection - concatenated set of estimates

Figure 2. Vertical projections of edge curve.
Estimation using noisy measurements

Applying the cosine kernel (4) we obtain the
following estimation algorithm:

R̂([x1,x2]) =
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Basing on the fact |uk−xk| ≤ 1, whenever xk−hn ≤
uk ≤ xk + hn,k = 1,2 and trigonometric identity
sin(a)−sin(b)= 2sin((a−b)/2)cos((a+b)/2) we
can compute the integral in (11) analytically and ob-
tain:
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The estimators of the partial derivatives with respect
to coordinates x1 and x2, respectively are given by:
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3-D edge curve - vertical view.

3-D edge curve - frontal view.
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3-D edge curve - skew view 1.

3-D edge curve - skew view 2.

Figure 3. Edge curve viewed in 3-D scatter charts

The integrals in (11) and (12) could be easily
calculated analytically. The experimenter chooses
measurement points xi from sub-regions Di, i.e.:
xi ∈ Di. A commonly used good choice is uniform
grid of equidistant points.

4 Tests and simulations results

A series of tests was carried out using the function
R(·) defined by:

R([x1,x2]) =




1.5−0.75 · x1 +1.25 · (x2 −1)2

for x2 ≤ L1(x1)
1.5−1.25 · x1 +1.25 · (x2 −1)2

for L1(x1)< x2 ≤ L2(x1)
1.5−1.75 · x1 +1.25 · (x2 −1)2

for x2 > L2(x1)
(15)

where

L1(x1) = 0.2+
0.2625+0.225 · sin(12 · x1)

(x1 +0.85)2 (16)

and
L2(x1) = 0.4+4.0 · (x1 −0.6)3 (17)

Simulations were performed using artificially gen-
erated measurement pairs x,y corrupted with ran-
dom additive noise. Tested functions defined by
(15) (16) (17) containing deep valleys and steep
slopes is shown in the Figure 1. The goal is to es-
tablish the curve along edge of the fault. In Figure
1 one can see function without noise, next the noisy
measurements and, in the second row, its nonpara-
metric estimate (algorithm (10)). Figure 2 shows
scatter plots of its partial derivatives obtained using
algorithms (13) and (14), respectively, and concate-
nated set of estimates on the square [0,1]× [0,1].
Figure 3 shows the scatter plots of estimated edge
curve in 3d-view. In the upper two rows we can see
the vertical view analogous to the bottom row plot
in Figure 2 and the horizontal direction view, the
frontal view. In the next rows of Figure 3 two skew
views can help to visualize the spatial shape of the
edge curve.
The input contain the 300 × 300 set of measure-
ments. They were corrupted with uniformly dis-
tributed random noise from the range [−0.5,0.5].
The parameter hn is deciding about the smooth-
ing property of the algorithm, and its value was
experimentally established as hn = 0.015. Note,
the larger hn the larger the level of estimate flat-
ness, which may lead to abrupt change detection
failure. Otherwise, choice of too small hn may
cause narrow peaks in first derivative estimates
leading to incorrect classification. Test program
was written in python programming language. Au-
tomatic detection of the local maxima correspond-
ing to function jumps of the first derivatives uses the
scipy.signal. f ind_peaks function from the SciPy
python library.

Conclusions and remarks

In this paper we have studied and solved the
task of deciding whether the sudden and/or abrupt
changes occurred in functions of two or more vari-
ables. We proposed a new algorithm based on the
fixed-design nonparametric kernel regression esti-
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mation techniques. We developed the Parzen ap-
proach in multi-dimensional case, and our algo-
rithm uses the estimation of the spatial derivatives
of functions. The application to two-dimensional
patterns is described in detail. The series of tests for
abrupt function changes detection were performed
on the sets of artificially generated measurements
corrupted by the additive random noise. The valid-
ity of the proposed approach and its practical use-
fulness was verified in the simulation. From the
simulation results one may conclude that the ef-
fectiveness of the proposed method improves when
the magnitude of the jump increases. Presented
methodology can be directly extended to the d-
dimensional (d > 2) space and the hyper-curves-
edge detection solution by applying the appropriate
product-type kernels.

The newly proposed algorithm has been tested
in the problem of detecting edge curves in two-
dimensional patterns. The algorithm was validated
in computer experiments. The future research will
investigate possible further extensions of the pro-
posed approach. Similar algorithms will be devel-
oped to solving the studied problem using the or-
thogonal series approach, see e.g., [42, 43].
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new approach to detection of changes in multidimen-
sional patterns, Journal of Artificial Intelligence and
Soft Computing Research, Vol. 10, Issue 2, 2020, pp.
125-136.

[21] T. Gasser, H.-G. Müller, Kernel estimation of re-
gression functions, Lecture Notes in Mathematics,
Vol. 757. Springer-Verlag, Heidelberg, 1979, pp. 23-
68.

[22] T. Gasser, H.-G. Müller, Estimating regression
functions and their derivatives by the kernel method,
Scandinavian Journal of Statistics, Vol. 11, No. 3,
1984, pp. 171-185.

[23] R.C. Gonzales, R.E. Woods, Digital Image Pro-
cessing, 4th Edition, Pearson, 2018.

[24] A. Gramacki, J. Gramacki, FFT-based fast band-
width selector for multivariate kernel density estima-
tion. Computational Statistics & Data Analysis, Else-
vier, Vol. 106, 2017, pp. 27-45.

[25] R. Grycuk, R. Scherer, M. Gabryel, New image de-
scriptor from edge detector and blob extractor. Jour-
nal of Applied Mathematics and Computational Me-
chanics, Vol. 14, No.4, 2015, pp. 31-39.

[26] R. Grycuk, M. Knop, S. Mandal, Video key frame
detection based on SURF algorithm. International
Conference on Artificial Intelligence and Soft Com-
puting, ICAISC’2015, Springer, Cham, 2015, pp.
566-576.

[27] R. Grycuk, M. Gabryel, M. Scherer, S.
Voloshynovskiy, Image descriptor based on edge
detection and crawler algorithm. In International
Conference on Artificial Intelligence and Soft
Computing, ICAISC’2016, Springer, 2016, pp.
647-659.

[28] L. Györfi, M. Kohler, A. Krzyżak, H. Walk, A
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