Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A vertically 2-D numerical model based on the Delft3D modelling system is set up, calibrated, and validated to simulate the tidal hydrodynamics in the Arabian Gulf. The model is a barotropic solution, controlled by 13 tidal components at open boundaries. The performance of the numerical model was evaluated using the hourly water level observations and the TOPEX/Poseidon altimetry data. Statistical analysis showed a good agreement between the simulated and observed water levels. RMS error was found to be ranged from 0.07 to 0.23 m, with maximum discrepancies observed at Ras Tanura and Mina Sulman stations. However, the IOA between the simulated and observed water levels was significant (0.95–0.99). On average, the errors for the tidal constituents considered in the analysis are in the order of <0.02 m (4%). The M2, S2, K1 and O1 tidal waves represent the largest among other constituents, where the amplitude of S2 represents almost 30% of the M2, and the O1 tidal wave represents about 50% of the K1 tide. The co-tidal charts of the semidiurnal tides show the existence of two anticlockwise amphidromic systems in the north and south ends (centred around 28.25° and 24.5°N respectively) close to the western side, while the diurnal constituents form only a single amphidromic point in the central part, centred around 26.8°N (North Bahrain). On the other hand, the velocity amplitudes of the U and V components of the numerical model were compared with a previous observational study and found to be agreed well.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
327--345
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
- Department of Marine Physics, Faculty of Marine Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
autor
- Department of Marine Physics, Faculty of Marine Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
- Department of Physical Oceanography, Faculty of Marine Sciences and Environment, Hodeidah University, Hodeidah, Yemen
Bibliografia
- 1. Admiralty, 2012. Co-tidal atlas Persian Gulf. NP 214. Ahmad, F., Sultan, S.A.R., 1991. Annual mean surface heat fluxes in the Arabian Gulf and the net heat transport through the Strait of Hormuz. Atmos. Ocean 29 (1), 54-61. https://doi.org/10.1080/07055900.1991.9649392
- 2. Akbari, P., Sadrinasab, M., Chegini, V., Siadatmousavi, M., 2016. Tidal constituents in the Persian Gulf, Gulf of Oman and Arabian Sea: a numerical study. Indian J. Geo-Mar. Sci. 45 (8), 1010-1016.
- 3. Al-Mahdi, A.A., Abdullah, S.S., Husain, N.A., 2009. Some features of the physical oceanography in Iraqi marine waters. Mesopotamian J. Mar. Sci. 24, 13-24.
- 4. Al-Subhi, A.M., 2010. Tide and sea level characteristics at Juaymah, west coast of the Arabian Gulf. J. King Abdulaziz Univ. Mar. Sci. 21, 133-149. https://doi.org/10.4197/Mar.21-1.8
- 5. Arakawa, A., Lamb, V.R., 1977. Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model. Methods Comput. Phys. 173-265. https://doi.org/10.1016/B978-0-12-460817-7.50009-4
- 6. Balaji, R., 2012. A case study on curtailed tidal hydrodynamic modeling along UAE coast. Int. J. Ocean Clim. Syst. 3, 45-56.
- 7. Barth, A., Alvera-Azcárate, A., Rixen, M., Beckers, J.-M., 2005. Two-way nested model of mesoscale circulation features in the Ligurian Sea. Prog. Oceanogr. 66, 171-189.
- 8. Bashir, M., 1993. Numerical modelling of tidal flows in the Arabiangulf. Brunel University, School of Information Systems, Computing and Mathematics.
- 9. Brewer, P.G., Dyrssen, D., 1985. Chemical oceanography of the Persian Gulf. Prog. Oceanogr. 14, 41-55.
- 10. Brewer, P.G., Fleer, A.P., Kadar, S., Shafer, D.K., Smith, C.L., 1978. Chemical oceanographic data from the Persian Gulf and Gulf of Oman. WHO Rep. 78, 37.
- 11. Chao, S.-Y., Kao, T.W., Al-Hajri, K.R., 1992. A numerical investigation of circulation in the Arabian Gulf. J. Geophys. Res. Ocean. 97, 11219-11236.
- 12. Debreu, L., Marchesiello, P., Penven, P., Cambon, G., 2012. Two-way nesting in split explicit ocean models: Algorithms, implementation and validation. Ocean Model. 49, 1-21.
- 13. Defant, A., 1961. In: Physical Oceanography, 1. Pergamon Press, London, 729 pp. https://doi.org/10.1017/S0025315400070089
- 14. Deltares, 2011. Delft3D-FLOW User Manual Simulation of Multidimensional Hydrodynamic Flows and Transport Phenomena, Including Sediments, User Manual, Hydro Morphodynamics, Version: 3.15
- 15. Egbert, G.D., Erofeeva, S.Y., 2002. Efficient Inverse Modeling of Barotropic Ocean Tides. J. Atmos. Ocean. Technol. 19, 183-204. https://doi.org/10.1175/1520-0426(2002)019〈0183:EIMOBO〉2.0.CO;2
- 16. Elshorbagy, W., Azam, M.H., Taguchi, K., 2006. Hydrodynamic characterization and modeling of the Arabian Gulf. J. Waterw. port, coastal, Ocean Eng. 132, 47-56.
- 17. Emery, K.O., 1956. Sediments and water of Persian Gulf. Am. Assoc. Pet. Geol. Bull. 40, 2354-2383.
- 18. Johns, W.E., Yao, F., Olson, D.B., Josey, S.A., Grist, J.P., Smeed, D.A., 2003. Observations of seasonal exchange through the Straits of Hormuz and the inferred heat and freshwater budgets of the Persian Gulf. J. Geophys. Res. 108 (12), 12-21. https://doi.org/10.1029/2003JC001881
- 19. Kämpf, J., Sadrinasab, M., 2006. The circulation of the Persian Gulf a numerical study. Ocean Sci. 2 (1), 27-41. https://doi.org/10.5194/os- 2- 27- 2006
- 20. Khalilabadi, M.R., 2016. Tide—surge interaction in the Persian Gulf, Strait of Hormuz and the Gulf of Oman. J. Weather 71 (10), 256-261. https://doi.org/10.1002/wea.2773
- 21. Lardner, R.W., Belen, M.S., Cekirge, H.M., 1982. Finite difference model for tidal flows in the Arabian Gulf. Comput. Math. Appl. 8(6), 425-444. https://doi.org/10.1016/0898-1221(82)90018-9
- 22. Lardner, R.W., Lehr, W.J., Fraga, R.J., Sarhan, M.A., 1988. A model of residual currents and pollutant transport in the Arabian Gulf. Appl. Math. Model. 12, 379-390.
- 23. Madah, F., Mayerle, R., Bruss, G., Bento, J., 2015. Characteristics of tides in the Red Sea region, a numerical model study. Open J. Mar. Sci. 5, 193-209. https://doi.org/10.4236/ojms.2015.52016
- 24. Mason, E., Molemaker, J., Shchepetkin, A.F., Colas, F., McWilliams, J.C., Sangrà, P., 2010. Procedures for offline grid nesting in regional ocean models. Ocean Model 35, 1-15.
- 25. Mehri, F., Torabi Azad, M., Mansoury, D., 2021. A Hydrodynamic Model of Tidal Current in the Strait of Hormuz. Int. J. Coast.Offshore Eng. 37-45.
- 26. Mohamed, K.A., El-Dahshan, M.E., 2002. Tidal analysis and prediction of the flow characteristics around. Abu dhabi Island. WIT Trans. Eng. Sci. 36.
- 27. Najafi, H.S., 1997. Modelling tides in the Persian Gulf using dynamic nesting. Univ. Adelaide, South Australia, 145 PP.
- 28. Palacio, C., Mayerle, R., Toro, M., Jimenez, N., 2005. Modelling of flow in a tidal flat area in the south-eastern German bight. Die Küste, 69 PROMORPH, 141-174.
- 29. Perrone, T.J., 1979. Winter shamal in the Persian Gulf. Tech. Rep.,
- 30. Naval Environ. Predict. Res. Facil., Monterey, Calif. 79-106.
- 31. Poul, H.M., Backhaus, J., Huebner, U., 2016. A description of the tides and effect of Qeshm canal on that in the Persian Gulf using two-dimensional numerical model. Arab. J. Geosci. 9, 148.
- 32. Pous, S., Carton, X., Lazure, P., 2012. A process study of the tidal circulation in the Persian Gulf. Open J. Mar. Sci. 2, 131-140.
- 33. Pous, S.P., Carton, X., Lazure, P., 2004. Hydrology and circulation in the Strait of Hormuz and the Gulf of Oman—Results from the GOGP99 Experiment: 2. Gulf of Oman. J. Geophys. Res. Ocean. 109.
- 34. Privett, D.W., 1959. Monthly charts of evaporation from the N. Indian Ocean (including the Red Sea and the Persian Gulf). Q. J.R. Meteorol. Soc. 85, 424-428.
- 35. Pugh, D.T., 2004. Changing Sea Levels: Effects of Tides, Weather and Climate. Eos, Trans. Am. Geophys. Union 85, 468. https://doi.org/10.1029/2004EO450010
- 36. Quaresma, L.S., Pichon, A., 2013. Modelling the barotropic tide along the West-Iberian margin. J. Mar. Syst. 109, S3—S25.
- 37. Reynolds, R.M., 1993. Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt Mitchell expedition. Mar. Pollut. Bull. 27, 35-59.
- 38. Roelvink, J.A., Banning, V.G., 1995. Design and development of DELFT3D and application to coastal morphodynamics. Oceanogr.Lit. Rev. 11, 925.
- 39. Roos, P.C., Schuttelaars, H.M., 2011. Influence of topography on tide propagation and amplification in semi-enclosed basins. Ocean Dyn. 61, 21-38. Sharaf El-Din, S.H., 1988. Sea Level Variation along the Saudi Coast of the Arabian Gulf and their Relation to Meteorological Parameters. Spec. Rep. 1409.
- 40. Siddig, N.A., Al-Subhi, A.M., Alsaafani, M.A., 2019. Tide and mean sea level trend in the west coast of the Arabian Gulf from tide gauges and multi-missions satellite altimeter. Oceanologia 61(4), 401-411. https://doi.org/10.1016/j.oceano.2019.05.003
- 41. Spall, M.A., Holland, W.R., 1991. A nested primitive equation model for oceanic applications. J. Phys. Oceanogr. 21, 205-220.
- 42. Stelling, G.S., Leendertse, J.J., 1992. Approximation of convective processes by cyclic AOI methods. Estuar. Coastal Model. 771-782.
- 43. Sultan, S.A.R., Ahmad, F., Elghribi, N.M., Al-Subhi, A.M., 1995. Ananalysis of Arabian Gulf monthly mean sea level. Cont. Shelf Res. 15, 1471-1482.
- 44. Thompson, E.F., Demirbilek, Z., Hadley, L.L., Rivers, P., Huff, K.E., 1994. Water Level and Current Simulation for LOTS Operations-Persian Gulf and Gulf of Oman.
- 45. Trepka, V.L., 1968. Investigation of the tides in the Persian Gulf by means of ahydrodynamic numerical model. In: Proceeding of Symposium on Mathematical Hydrological Investigations of Physical Process in the Sea, 59-63.
- 46. Verboom, G.K., Slob, A., 1984. Weakly reflective boundary conditions for two-dimensional water flow problems. 5th Int. Conf. On Finite Elements in Water Resources, June 1984, Vermont. Also Adv. Water Resour., 7.
- 47. Willmott, C.J., 1981. On the validation of models. Phys. Geogr. 2, 184-194.
- 48. Yao, F., 2008. Water mass formation and circulation in the Persian Gulf and water exchange with the Indian Ocean Ph.D. thesis. Univ. of Miami.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f55808c-4394-45ec-a44e-1f6ec00df54f