PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conceptual Model Creation for Automated Self-training System of Functional Control and Detection of Railway Transport

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to improve the operational reliability and service life of the main systems, components and assemblies (SCA) of railway transport (RT), it is necessary to timely detect (diagnose) their defects, including the use of the methods of intellectual analysis and data processing. One of the promising approaches to the synthesis of the SCA functional control system is the use of intelligent technology (INTECH) methods. This technology is based on maximizing the information capacity of an automated decision support system for detecting faults during its training.
Rocznik
Strony
603--608
Opis fizyczny
Bibliogr. 17 poz., schem., tab., wykr.
Twórcy
  • Kazakh University Ways of Communications, Almaty, Kazakhstan
  • Kazakh University Ways of Communications, Almaty, Kazakhstan
  • Kazakh University Ways of Communications, Almaty, Kazakhstan
  • Kazakh University Ways of Communications, Almaty, Kazakhstan
  • Kazakh Academy of Transport and Communications named after M. Tynyshpayev, Almaty, Kazakhstan
  • Kazakh University Ways of Communications, Almaty, Kazakhstan
Bibliografia
  • [1] M. Schickert, I. Aydin, M. Karakose, E. & Akin, ”A new contactless ¨ fault diagnosis approach for pantograph-catenary system,” in MECHATRONIKA, 2012 15th International Symposium (pp. 1-6). IEEE, 2012.
  • [2] A. Le Mortellec, J. Clarhaut, Y. Sallez, D. Berger, & Trentesaux, ”Embedded holonic fault diagnosis of complex transportation systems,” Engineering Applications of Artificial Intelligence, 2013, 26(1), pp. 227-240.
  • [3] Ph M. Papaelias, C. Roberts, L.C. & Davis, ”A review on non-destructive evaluation of rails: state-of-the-art and future development,” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and rapid transit, 2008, 222(4), pp. 367-384.
  • [4] J. Seeliger, Mackel, D. Georges, ”Measurement and diagnosis of process-disturbing oscillations in high-speed rolling plants,” in Proc. XIV IMEKO World Congress, 2002.
  • [5] X.S. Jin, J. Guo, X.B. Xiao, Z.F. Wen, & Z.R. Zhou, ”Key scientific problems in the study on running safety of high speed trains,” Engineering Mechanics, 2009, 26(Sup II), pp. 8–25.
  • [6] L. Mariani, F. Pastore, & M. Pezze, ”Dynamic analysis for diagnosing integration faults,” IEEE Transactions on Software Engineering, 2011, 37(4), pp. 486-508.
  • [7] Y.C. Huang, H.C. Sun, ”Dissolved gas analysis of mineral oil for power transformer fault diagnosis using fuzzy logic,” IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(3), pp. 974-981.
  • [8] Orban, Zoltan, and Marc Gutermann, ”Assessment of masonry arch railway bridges using non-destructive in-situ testing methods,” Engineering Structures, 2019, 31.10 (2009): pp. 2287-2298.
  • [9] Yella, Siril, M. S. Dougherty, and N. K. Gupta, ”Artificial intelligence techniques for the automatic interpretation of data from non-destructive testing,” Insight-Non-Destructive Testing and Condition Monitoring, 2006, 48.1: pp. 10-20.
  • [10] P.S. Bhowmik, S. Pradhan, M. Prakash, ”Fault diagnostic and monitoring methods of induction motor: a review,” International Journal of Applied Control, Electrical and Electronics, 2013, Vol. 1, pp. 1-18.
  • [11] Petr Dolezel, Pavel Skrabanek, Lumir Gago, ”Pattern recognition neural network as a tool for pest birds detection,” Computational Intelligence, SSCII EEE Symposium Series on, 2016, pp. 1-6.
  • [12] V. Lakhno, Y. Tkach, T. Petrenko, S. Zaitsev, & V. Bazylevych, V. ”Development of adaptive expert system of information security using a procedure of clustering the attributes of anomalies and cyber attacks,” Eastern-European Journal of Enterprise Technologies, 2016, (6 (9)), pp. 32-44.
  • [13] V. Lakhno, ”Creation of the adaptive cyber threat detection system on the basis of fuzzy feature clustering,” Eastern-European Journal of Enterprise Technologies, 2016, 2.9 2016:18.
  • [14] V.A. Lakhno, P.U. Kravchuk, V.P. Malyukov, V.N. Domrachev, L.V. Myrutenko, O.S. Piven, ”Developing of the cyber security system based on clustering and formation of control deviation signs,” Journal of Theoretical and Applied Information Technology, Vol. 95, Iss. 21, pp. 5778-5786.
  • [15] A.S. Dovbish, ”Osnovi proektuvannja ntelektualnih sistem” / A.S. Dovbish. Sumi: SumDU, 2009, 171 p.
  • [16] X. Zhang, N. Feng, Y. Wang, & Y. Shen, ”Acoustic emission detection of rail defect based on wavelet transform and Shannon entropy,” Journal of Sound and Vibration, 2015, p. 419-432.
  • [17] A. Giantomassi, F. Ferracuti, S. Iarlori, G. Ippoliti, & S. Longhi, ”Electric motor fault detection and diagnosis by kernel density estimation and Kullback–Leibler divergence based on stator current measurements,” IEEE Transactions on Industrial Electronics, 2015, 62(3), pp. 1770-1780.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f4a8daa-b6e1-4800-83df-1eb866e801a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.