PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of circular aperture diffraction on propagation properties of cylindrical vector partially coherent Laguerre–Gaussian beams in turbulent atmosphere

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
On the basis of the extended Huygens–Fresnel integral formula, the analytical formulae for the cross-spectral density matrix of the arbitrary cylindrical vector partially coherent Laguerre–Gaussian beams diffracted by a circular aperture in turbulent atmosphere are derived. The average intensity, the degree of polarization, and the degree of coherence of the apertured cylindrical vector partially coherent beams propagating in turbulent atmosphere are investigated. The analyses indicate that both the beam diffraction effect by a circular aperture and the atmospheric turbulence have a great impact on the beam evolution, polarization and coherence properties of the apertured cylindrical vector partially coherent beams.
Czasopismo
Rocznik
Strony
421--433
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • School of Science, Wuhan University of Technology, Wuhan 430070, China
autor
  • School of Science, Wuhan University of Technology, Wuhan 430070, China
Bibliografia
  • [1] BISS D.P., YOUNGWORTH K.S., BROWN T.G., Dark-field imaging with cylindrical-vector beams, Applied Optics 45(3), 2006, pp. 470–479.
  • [2] KOZAWA Y., SATO S., Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams, Optics Express 18(10), 2010, pp. 10828–10833.
  • [3] DREVINSKAS R., JINGYU ZHANG, BERESNA M., GECEVIČIUS M., KAZANSKII A.G., SVIRKO Y.P., KAZANSKY P.G., Laser material processing with tightly focused cylindrical vector beams, Applied Physics Letters 108(22), 2016, article ID 221107.
  • [4] AHMADIVAND A., SINHA R., PALA N., Magnetic fano resonances in all-dielectric nanocomplexes under cylindrical vector beams excitation, Optics and Laser Technology 90, 2017, pp. 65–70.
  • [5] RUI-PIN CHEN, GUOQIANG LI, The evanescent wavefield part of a cylindrical vector beam, Optics Express 21(19), 2013, pp. 22246–22254.
  • [6] XINTING JIA, YINGPING YANG, JINGQI LU, Nonparaxial analyses of cylindrical vector beams with arbitrary polarization order in the far field, Journal of Modern Optics 63(16), 2016, pp. 1544–1551.
  • [7] MAURER C., JESACHER A., FÜRHAPTER S., BERNET S., RITSCH-MARTE M., Tailoring of arbitrary optical vector beams, New Journal of Physics 9, 2007, article ID 78.
  • [8] LEI GONG, YUXUAN REN, WEIWEI LIU, MENG WANG, MINCHENG ZHONG, ZIQIANG WANG, YINMEI LI, Generation of cylindrically polarized vector vortex beams with digital micromirror device, Journal of Applied Physics 116(18), 2014, article ID 183105.
  • [9] KOROTKOVA O., SALEM M., WOLF E., The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence, Optics Communications 233(4–6), 2004, pp. 225–230.
  • [10] YUANHANG ZHAO, YIXIN ZHANG, QIU WANG, Average polarization of electromagnetic Gaussian Schell-model beams through anisotropic non-Kolmogorov turbulence, Radioengineering 25(4), 2016, pp. 652–657.
  • [11] MEILAN LUO, DAOMU ZHAO, Propagation of electromagnetic spectral Gaussian Schell-model beams in atmosphere, Optics Communications 336, 2015, pp. 98–102.
  • [12] JINHONG LI, KEYING ZHAO, YUNZHONG LAI, Changes in the states of polarization of random electromagnetic beams in atmospheric turbulence, Optica Applicata 47(1), 2017, pp. 51–62.
  • [13] YANGJIAN CAI, QIANG LIN, EYYUBOĞLU H.T., BAYKAL Y., Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere, Optics Express 16(11), 2008, pp. 7665–7673.
  • [14] HUICHUAN LIN, JIXIONG PU, Propagation properties of partially coherent radially polarized beam in a turbulent atmosphere, Journal of Modern Optics 56(11), 2009, pp. 1296–1303.
  • [15] HE WANG, DAJUN LIU, ZHONGXIANG ZHOU, SHOUFENG TONG, YANSONG SONG, Propagation properties of radially polarized partially coherent beam in turbulent atmosphere, Optics and Lasers in Engineering 49(9–10), 2011, pp. 1238–1244.
  • [16] GUOQUAN ZHOU, Average intensity and polarization properties of a cylindrical vector Laguerre–Gaussian beam passing through a paraxial ABCD optical system in a turbulent atmosphere, Optics Communications 296, 2013, pp. 9–16.
  • [17] RONG CHEN, YIMING DONG, FEI WANG, YANGJIAN CAI, Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere, Applied Physics B 112(2), 2013, pp. 247–259.
  • [18] KIMEL I., ELIAS L.R., Relations between Hermite and Laguerre Gaussian modes, IEEE Journal of Quantum Electronics 29(9), 1993, pp. 2562–2567.
  • [19] YIMING DONG, YANGJIAN CAI, CHENGLIANG ZHAO, MIN YAO, Statistics properties of a cylindrical vector partially coherent beam, Optics Express 19(7), 2011, pp. 5979–5992.
  • [20] WOLF E., Unified theory of coherence and polarization of random electromagnetic beams, Physics Letters A 312(5–6), 2003, pp. 263–267.
  • [21] WEN J.J., BREAZEALE M.A., A diffraction beam field expressed as the superposition of Gaussian beams, Journal of the Acoustical Society of America 83(5), 1988, pp. 1752–1756.
  • [22] DESHENG DING, XIAOJUN LIU, Approximate description for Bessel, Bessel–Gauss, and Gaussian beams with finite aperture, Journal of the Optical Society of America A 16(6), 1999, pp. 1286–1293.
  • [23] YANGJIAN CAI, SAILING HE, Propagation of hollow Gaussian beams through apertured paraxial optical systems, Journal of the Optical Society of America A 23(6), 2006, pp. 1410–1418.
  • [24] CHU X., NI Y., ZHOU G., Propagation of cosh-Gaussian beams diffracted by a circular aperture in turbulent atmosphere, Applied Physics B 87(3), 2007, pp. 547–552.
  • [25] WANG S.C.H., PLONUS M.A., Optical beam propagation for a partially coherent source in the turbulent atmosphere, Journal of the Optical Society of America 69(9), 1979, pp. 1297–1304.
  • [26] GRADSHTEYN I.S., RYZHIK I.M., Table of Integrals, Series, and Products, Academic Press, New York, 2007.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f3ee4b8-bd5a-47db-83f3-5ff4e7744524
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.