Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper analyses the inverse marching method used to determine the thermal stresses on the inner surface of a thick-walled cylindrical element not weakened by holes in the transient state. The heat conduction problem was considered one-dimensional, i.e. it was assumed that heat is transferred only in the radial direction. The method is based on measuring the temperature inside the pipeline wall at a single point and assuming that the pipeline is thermally insulated. The paper undertook an evaluation of the influence of the measuring point's distance from the inner surface, the number of control volumes into which the inverted area was divided and the length of the time step on the accuracy of the calculated temper-ature, heat transfer coefficient and thermal stresses on the inner surface of the pressure element. Verification was performed by comparing the calculation results obtained from the direct analytical method perturbed by random errors with those obtained from the numerical inverse step method.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
95--105
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
- Cracow University of Technology, Faculty of Environmental and Energy Engineering, ul. Warszawska 24, Cracow 31-155, Poland
Bibliografia
- [1] Fang, L., Su, F., Kang Z., & Zhu, H. (2024). Finite element (FE) analysis of thermal stress in production process of multi-layer lin-ing ladle. Case Studies in Thermal Engineering, 57, 104307. doi: 10.1016/j.csite.2024.104307
- [2] Taler, D., Dzierwa, P., Kaczmarski, K., & Taler, J. (2022). In-crease the flexibility of steam boilers by optimisation of critical pressure component heating. Energy, 250, 1–18. doi: 10.1016/ j.energy.2022.123855
- [3] Taler, D., Kaczmarski, K., Dzierwa, P., Taler, J., & Trojan, M. (2024). Optimisation of the cooling of pressurised thick-walled components operating with fluid at saturation temperature. En-ergy, 290, 1–15. https://doi.org/10.1016/j.energy.2023.129975
- [4] Oh, Ch., Lee,S., Jhung, M. J., & Huh N.-S. (2022). Analytical approach to estimate the thermal stress distribution of reactor pressure vessel nozzle corners with a constant cooldown rate. In-ternational Journal of Pressure Vessels and Piping, 197, 104608. doi: 10.1016/j.ijpvp.2022.104608
- [5] Jeong, S.-H., Chung, K.-S., Ma, W.J., Yang, J.S., Choi, J.B., & Kim, M. K. (2022). Thermal stress intensity factor solutions for reactor pressure vessel nozzles. Nuclear Engineering and Tech-nology, 54, 2188–2197. doi: 10.1016/j.net.2022.01.006
- [6] Olivera, S. J., Mostafavia, M., Hosseinzadehb, F., & Paviera, M. J. (2019). Redistribution of residual stress by thermal shock in reactor pressure vessel steel clad with nickel alloy. International Journal of Pressure Vessels and Piping, 169, 37–47. doi: 10.1016/j.ijpvp.2018.11.007
- [7] Radin, Y.A., Kontorovich, T.S., & Golov, P.V. (2020). Monitor-ing The Thermal Stress State In Steam Turbines. Power Technol-ogy and Engineering, 53(6), 719–723. doi: 10.1007/s10749-020-01146-6
- [8] Radin, Y.A., & Kontorovich, T.S. (2021). Influence Of The Ar-rangement Of The Highand Intermediate-Pressure Cylinders Of Steam Turbines With Different Bypass Circuits On Their Ther-mal Stress State During Start-Ups And Shutdowns. Power Tech-nology and Engineering, 54(5), 720–725. doi: 10.1007/ s10749-020-01276-x
- [9] Radin, Y.A., & Kontorovich, T.S. (2024). Influence Of Parame-ter Deviations Vis-À-Vis Assignment Schedule On Thermally Stressed State Of Main Thermal Power Plant Equipment. Power Technology and Engineering, 57(6), 918–921. doi: 10.1007/s10749-024-01758-2
- [10] Taler, J., Taler, D., Kaczmarski, K., Dzierwa, P., Trojan, M., & Jaremkiewicz, M. (2018). Allowable Rates of Fluid Temperature Variations and Thermal Stress Monitoring in Pressure Elements of Supercritical Boilers. Heat Transfer Engineering, 40(17–18), 1430–1441. doi: 10.1080/01457632.2018.1474584
- [11] Wacławiak, K., & Okrajni, J. (2019). Transient heat transfer as a leading factor in fatigue of thick-walled elements at power plants. Archives of Thermodynamics, 40(3), 43–55. doi: 10.24425/ather. 2019.129549
- [12] Taler, J., Dzierwa, P., Jaremkiewicz, M., Taler, D., Kaczmarski, K., & Trojan, M. (2018). Thermal stress monitoring in thick-walled pressure components based on the solutions of the inverse heat conduction problems. Journal of Thermal Stresses, 41(10−12), 1501–1524. doi: 10.1080/01495739.2018.1520621
- [13] Teixeira Júnior, M., Zilio, G., Mortean, M.V.V., de Paiva, K.V., & Oliveira, J.L.G. (2023). Experimental and numerical analysis of transient thermal stresses on thick-walled cylinder. Interna-tional Journal of Pressure Vessels and Piping, 202, 104884. doi: 10.1016/j.ijpvp.2023.104884
- [14] Taler, J., & Duda, P. (2000). Experimental verification of space marching methods for solving inverse heat conduction problems. Heat and Mass Transfer, 36, 325–331. doi: 10.1007/ s002310000082
- [15] Jaremkiewicz, M., Dzierwa, P., Taler, D., & Taler, J. (2019). Monitoring of transient thermal stresses in pressure components of steam boilers using an innovative technique for measuring the fluid temperature. Energy, 175, 139–150. doi: 10.1016/j.energy. 2019.03.049
- [16] Jaremkiewicz, M., Taler, D., Dzierwa, P., & Taler, J. (2019). De-termination of transient fluid temperature and thermal stresses in pressure thick-walled elements using a new design thermometer. Energies, 12, 1–21. doi: 10.3390/en12020222
- [17] Taler, J., Dzierwa, P., Jaremkiewicz, M., Taler, D., Kaczmarski, K., Trojan, M., Węglowski, B., & Sobota, T. (2019). Monitoring of transient 3D temperature distribution and thermal stress in pressure elements based on the wall temperature measurement. Journal of Thermal Stresses, 42, 698–724. doi: 10.1080/ 01495739.2019.1587328
- [18] Taler, J., Dzierwa, P., Jaremkiewicz, M., Taler, D., Kaczmarski, K., Trojan, M., & Sobota, T. (2019). Thermal stress monitoring in thick walled pressure components of steam boilers. En-ergy, 175, 645–666. doi: 10.1016/j.energy.2019.03.087
- [19] Joachimiak, M., Joachimiak, D., & Ciałkowski, M. (2022). Inves-tigation on Thermal Loads in Steady-State Conditions with the Use of the Solution to the Inverse Problem. Heat Transfer Engi-neering, 44(11–12), 963–969. doi: 10.1080/01457632.2022. 2113451
- [20] Joachimiak, M., & Joachimiak, D. (2024). Stabilization of bound-ary conditions obtained from the solution of the inverse problem during the cooling process in a furnace for thermochemical treat-ment. International Journal of Heat and Mass Transfer, 224, 125274. doi: 10.1016/j.ijheatmasstransfer.2024.125274
- [21] Ciałkowski, M., Joachimiak, M., Mierzwiczak, M., Frąckowiak, A., Olejnik, A., & Kozakiewicz, A. (2023). The analysis of the stability of the Cauchy problem in the cylindrical double-layer area. Archives of Thermodynamics, 44(4), 563–579. doi: 10.24425/ather.2023.149735
- [22] Taler, J. (1995). Theory and practice of identifying heat transfer processes, Zakład Narodowy im. Ossolińskich (in Polish).
- [23] TRD 301 (2001). Zylinderschalen unter innerem Überdruck. Technische Regeln für Dampfkessel (TRD), Heymanns Beuth Köln-Berlin.
- [24] European Standard EN 12952-3 (2001). Water-tube boilers and auxiliary installations. Part 3: design and calculation for pres-sure parts. European Committee for Standardization.
- [25] Taler, J., Dzierwa, P., & Taler, D. (2011). Optimisation of heating and cooling of thick-walled boiler components. In Thermal and flow processes in large power boilers, Modelling and monitoring (pp. 584–625). Wydawnictwo Naukowe PWN (in Polish).
- [26] Taler, J., & Zima, W. (1999). Solution of inverse heat conduction problems using control volume approach. International Journal of Heat and Mass Transfer, 42, 1123–1140. doi: 10.1016/S0017-9310(98)00280-4
- [27] Taler, J., Zima, W., & Jaremkiewicz, M. (2016). Simple method for monitoring transient thermal stresses in pipelines. Journal of Thermal Stresses, 39, 386–397. doi: 10.1080/01495739.2016. 1152109
- [28] Taler, J., & Duda, P. (2006). Solving Direct and Inverse Heat Conduction Problems, Springer.
- [29] Taler, J.(1999). A new space marching method for solving in-verse heat conduction problems. Forschung im Ingenieurwesen, 64, 296–306. doi: 10.1007/PL00010844
- [30] Jaremkiewicz, M., & Taler, J. (2018). Measurement of Transient Fluid Temperature in a Pipeline. Heat Transfer Engineering, 39(13–14), 1227–1234. doi: 10.1080/01457632.2017.1363631
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f3431f6-c88b-4886-85fe-171a695cada3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.