PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie ultradźwięków w leczeniu uszkodzeń i odbudowie kości. przegląd piśmiennictwa

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The use of ultrasound in the treatment of defects and rebuilding of bones. literature review
Języki publikacji
PL
Abstrakty
PL
Terapia ultradźwiękowa jest obecnie szeroko dostępna oraz stosowana w fizjoterapii i medycynie sportowej. Pulsacyjne ultradźwięki niskiej częstotliwości LIPUS (ang. low-intesity pulsed ultrasound) nie powodują zmian termicznych. Badania kliniczne, zgodne z medycyną opartą na faktach, potwierdziły możliwość ich zastosowania w procesie zrostu kostnego. Celem pracy jest przegląd obecnego stanu wiedzy na temat LIPUS. Do badań wykorzystano platformę Web of Knowledge. Używanym językiem był język angielski. Jako opcje wyszukiwania zostały użyte różne kombinacje słów kluczowych: LIPUS, bone, soft tissue, healing. Wyszukiwania zostały zawężone do publikacji z ostatnich 10 lat z włączoną lematyzacją. 10 prac zostało ocenionych pod kątem skuteczności randomizacji dla potrzeb medycyny opartej na faktach. Badania, głównie przedkliniczne, dowodzą przydatności stosowania LIPUS w przypadku opóźnionego zrostu kostnego lub jego braku. Jednakże niska wartość metodologiczna badań nad zwierzętami bądź liniami komórkowymi sugeruje potrzebę dalszego kontynuowania prac.
EN
The ultrasound therapy is now widely available and used in physiotherapy and sports medicine. The low-intensity pulsed ultrasound (LIPUS) does not cause any thermal reactions. Clinical examination, conducted in accordance with the evidence-based medicine, has confirmed its applicability in the process of bone healing. The purpose of the review is to review the current state of knowledge on LIPUS. Web of Knowledge platform was exploited. The language used was English. Different combinations of keywords were used as the search options: LIPUS, bone, soft tissue, healing. The exploration was restricted to the publications from the last 10 years and included lemmatization. 10 papers were evaluated in terms of results efficacy of randomization for the evidence-based medicine purposes. The examination, mainly preclinical, proved the usefulness of LIPUS in the case of delayed union or non-union of bone. However, the low value of methodological studies on animals or cell lines suggests the need for further continuation of the work.
Wydawca
Rocznik
Strony
172--180
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
autor
  • Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu, Wydział Nauk o Zdrowiu, Katedra Fizjoterapii, Zakład Rehabilitacji w Dysfunkcjach Narządu Ruchu, 50-355 Wrocław, ul. Grunwaldzka 2
autor
  • Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu, Wydział Nauk o Zdrowiu, Katedra Fizjoterapii, Zakład Rehabilitacji w Dysfunkcjach Narządu Ruchu, 50-355 Wrocław, ul. Grunwaldzka 2
  • Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu, Wydział Nauk o Zdrowiu, Katedra Fizjoterapii, Zakład Rehabilitacji w Dysfunkcjach Narządu Ruchu, 50-355 Wrocław, ul. Grunwaldzka 2
autor
  • Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu, Wydział Nauk o Zdrowiu, Katedra Fizjoterapii, Zakład Klinicznych Podstaw Fizjoterapii, 50-355 Wrocław, ul. Grunwaldzka 2
  • Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu, Wydział Nauk o Zdrowiu, Katedra Fizjoterapii, Zakład Lecznictwa Uzdrowiskowego, Historii Medycyny Fizykalnej i Balneologii, 50-355 Wrocław, ul. Grunwaldzka 2
Bibliografia
  • [1] J.D. Heckman, J. Sarasohn-Kahn: The economics of treating tibia fractures. The cost of delayed unions, Bulletin Hospital for Joint Diseases, vol. 56(1), 1997, s. 63–72.
  • [2] C.L. Romano, D. Romano, N. Logoluso: Low-Intensity Pulsed Ultrasound for the treatment of bone delayed union or nonunion: a review, Ultrasound in Medicine and Biology, vol. 35(4), 2009, s. 529–536.
  • [3] W.L. Healy, J.B. Jupiter, T.K. Kristiansen, R.R. White: Nonunion of the proximal humerus. A review of 25 cases, Journal of Orthopaedic Trauma, vol. 4(4), 1990, s. 424–431.
  • [4] J.D. Rompe, T. Rosendahl, C. Schollner, C. Theis: Nigh-energy extracorporeal shock wave treatment of nonunions, Clinical Orthopaedics and Related Research, vol. 387, 2001, s. 102–111.
  • [5] S.D. Cook, S.L. Salkeld, L.S. Popich-Patron, J.P. Ryaby, D.G. Jones, R.L. Barrack: Improved cartilage repair after treatment with low-intensity pulsed ultrasound, Clinical Orthopaedics and Related Research, vol. 391, 2001, s. 231–243.
  • [6] O. Aynaci, C. Onder, A. Piskin, Y. Ozoran: The effect of ultrasound on the healing of muscle-pediculated bone graft in spinal fusion, Spine, vol. 27(14), 2002, s. 1531–1535.
  • [7] M. Hadjiargyrou, K. McLeod, J.P. Ryaby, C. Rubin: Enhancement of fracture healing by low intensity ultrasound, Clinical Orthopaedics and Related Research, vol. 355, 1998, s. 216–229.
  • [8] S.J. Warden: A new direction for ultrasound therapy in sports medicine, Sports Medicine, vol. 33(2), 2003, s. 95–107.
  • [9] N.A. Walker, C.R. Denegar, J. Preische: Low-intensity pulsed ultrasound and pulsed electromagnetic field in the treatment of tibial fractures: A systematic review, Journal of Athletic Training, vol. 42(4), 2007, s. 530–535.
  • [10] W.H. Cheung, S.K.H. Chow, M.H. Sun, L.Qin, K.S. Leung: Low-intensity pulsed ultrasound accelerated callus formation, angiogenesis and callus remodeling in osteoporotic fracture healing, Ultrasound in Medicine and Biology, vol. 37(2), 2011, s. 231–238.
  • [11] A. Khanna, R.T.C. Nelmes, N. Gougoulias, N. Maffulli, J. Gray: The effects of LIPUS on soft-tissue healing: a review of literature, British Medical Bulletin, vol. 89(1), 2009, s. 169–182.
  • [12] J. Nakao, Y. Fujii, J. Kusuyama, K. Bandow, K. Kakimoto, T. Ohnishi, T. Matsuguchi: Low-intensity pulsed ultrasound (LIPUS) inhibits LPS-induced inflammatory responses of osteoblasts through TLR4-MyD88 dissociation, Bone, vol. 58, 2014, s. 17–25.
  • [13] Y. Watanabe, Y. Arai, N. Takenaka, M. Kobayashi, T. Matsushita: Three key factors affecting treatment results of low-intensity pulsed ultrasound for delayed unions and nonunions: instability, gap size, and atrophic nonunion, Journal of Orthopaedic Science, vol. 18(5), 2013, s. 803–810.
  • [14] W.L. Nyborg: Biological effects of ultrasound: Development of safety guidelines. Part II: General review, Ultrasound in Medicine and Biology, vol. 27(3), 2001, s. 301–333.
  • [15] J. Parvizi, C.C. Wu, D.G. Lewallen, J.F. Greenleaf, M.E. Bolander: Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression, Journal of Orthopaedic Research, vol. 17(4), 1999, s. 488–494.
  • [16] P. Pohl, E. Rosenfeld, R. Millner: Effects of ultrasounds on the steady-state transmembrane ph gradient and the permeability of acetic-acid throught bilateral lipid-membranes, Biochimica Et Biophysica Acta, vol. 1145(2), 1993, s. 279–283.
  • [17] P. Reher, M. Harris, M. Whiteman, H.K. Hai, S. Meghji: Ultrasound stimulates nitric oxide and prostaglandin E-2 production by human osteoblasts, Bone, vol. 31(1), 2002, s. 236–241.
  • [18] K.G. Baker, V.J. Robertson, F.A. Duck: A review of therapeutic ultrasound: Biophysical effects, Physical Therapy, vol. 81(7), 2001, s. 1352–1358.
  • [19] M.W. vanTulder, W.J.J. Assendelft, B.W. Koes, L.M. Bouter: Method guidelines for systematic reviews in the Cochrane Collaboration back review group for spinal disorders, Spine, vol. 22(20), 1997, s. 2323–2330.
  • [20] A.P. Verhagen, H.C.W. de Vet, R.A. de Bie, A.G.H. Kessels, M. Boers, L.M. Bouter, P.G. Knipschild: The delphi list: A criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi -consensus, Journal of Clinical Epidemiology, vol. 51(12), 1998, s. 1235–1241.
  • [21] D. Moher, D.J. Cook, S. Eastwood, I. Olkin, D. Rennie, D.F. Stroup, Q. Grp: Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement, Lancet, vol. 354(9193), 1999, s. 597–602.
  • [22] K. Ikeda, T. Takayama, N. Suzuki, K. Shimada, K. Otsuka, K. Ito: Effects of low-intensity pulsed ultrasound on the differentiation of C2C12 cells, Life Sciences, vol. 79(20), 2006, s. 1936–1943.
  • [23] T. Iwashina, J. Mochida, T. Miyazaki, T. Watanabe, S. Iwabuchi, K. Ando, T. Hotta, D. Sakai: Low-intensity pulsed ultrasound stimulates cell proliferation and proteoglycan production in rabbit intervertebral disc cells cultured in alginate, Biomaterials, vol. 27(3), 2006, s. 354–361.
  • [24] S. Rutten, P.A. Nolte, C.M. Korstjens, M.A. van Duin, J. Klein-Nulend: Low-intensity pulsed ultrasound increases bone volume, osteoid thickness and mineral apposition rate in the area of fracture healing in patients with a delayed union of the osteotomized fibula, Bone, vol. 43(2), 2008, s. 348–354.
  • [25] C.W. Chan, L. Qin, K.M. Lee, M. Zhang, J.C.Y. Cheng, K.S. Leung: Low intensity pulsed ultrasound accelerated bone remodeling during consolidation stage of distraction osteogenesis, Journal of Orthopaedic Research, vol. 24(2), 2006, s. 263–270.
  • [26] T. Takayama, N. Suzuki, K. Ikeda, T. Shimada, A. Suzuki, M. Maeno, K. Otsuka, K. Ito: Low-intensity pulsed ultrasound stimulates osteogenic differentiation in ROS 17/2.8 cells, Life Sciences, vol. 80(10), 2007, s. 96–971.
  • [27] K. Sakurakichi, H. Tsuchiya, K. Uehara, T. Yamashiro, K. Tomita, Y. Azuma: Effects of timing of low-intensity pulsed ultrasound on distraction osteogenesis, Journal of Orthopaedic Research, vol. 22(2), 2004, s. 395–403.
  • [28] C.W. Chan, L. Qin, K.M. Lee, W.H. Cheung, J.C.Y. Cheng, K.S. Leung: Dose-dependent effect of low-intensity pulsed ultrasound on callus formation during rapid distraction osteogenesis, Journal of Orthopaedic Research, vol. 24(11), 2006, s. 2071–2079.
  • [29] S. Jingushi, K. Mizuno, T. Matsushita, M. Itoman: Low-intensity pulsed ultrasound treatment for postoperative delayed union or nonunion of long bone fractures, Journal of Orthopaedic Science, vol. 12(1), 2007, s. 35–41.
  • [30] M. Saito, S. Soshi, T. Tanaka, K. Fujii: Intensity-related differences in collagen post-translational modification in MCM-E1 osteoblasts after exposure to low- and high-intensity pulsed ultrasound, Bone, vol. 35(3), 2004 s. 644–655.
  • [31] L. Qin, P. Fok, H.B. Lu, S.Q. Shi, Y. Leng, K.S. Leung: Low intensity pulsed ultrasound increases the matrix hardness of the healing tissues at bone-tendon insertion – a partial patellectomy model in rabbits, Clinical Biomechanics, vol. 21(4), 2006, s. 387–394.
  • [32] S. Mukai, H. Ito, Y. Nakagawa, H. Akiyama, M. Miyamoto, T. Nakamura: Transforming growth factor-beta(1) mediates the effects of low-intensity pulsed ultrasound in chondrocytes, Ultrasound in Medicine and Biology, vol. 31(12), 2005, s. 1713–1721.
  • [33] K.H. Yang, J. Parvizi, S.J. Wang, D.G. Lewallen, R.R. Kinnick, J.F. Greenleaf, M.E. Bolander: Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model, Journal of Orthopaedic Research, vol. 14(5), 1996, s. 802–809.
  • [34] Y.Y. Wu, R. Lucking, R. Oberreuter, K. Shimada: New Distraction Osteogenesis Device With Only Two Patient-Controlled Joints by Applying the Axis-Angle Representation on Three-Dimensional Bone Deformation, Journal of Medical Devices, vol. 7(4), 2013, doi: 10.1115/1.4025186.
  • [35] K.S. Leung, W.S. Lee, H.F. Tsui, P.P.L. Liu, W.H. Cheung: Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound, Ultrasound in Medicine and Biology, vol. 30(3), 2004, s. 389–395.
  • [36] E. Mayr, A. Laule, G. Suger, A. Ruter, L. Claes: Radiographic results of callus distraction aided by pulsed low-intensity ultrasound, Journal of Orthopaedic Trauma, vol. 15(6), 2001, s. 407–414.
  • [37] C.H. Fung, W.H. Cheung, N.M. Pounder, F.J. de Ana, A. Harrison, K.S. Leung: Investigation of rat bone fracture healing using pulsed 1.5 MHz, 30 mW/cm2 burst ultrasound - Axial distance dependency, Ultrasonics, vol. 54(3), 2014, s. 850–859.
  • [38] F.R.T. Nelson, C.T. Brighton, J. Ryaby, B.J. Simon, J.H. Nielson, D.G. Lorich, M. Bolander, J. Seelig: Use of physical forces in bone healing, The Journal of the American Academy of Orthopaedic Surgeons, vol. 11(5), 2003, s. 344–354.
  • [39] K. Naito, T. Watari, T. Muta, A. Furuhata, H. Iwase, M. Igarashi, H. Kurosawa, I. Nagaoka, K. Kaneko: Low-Intensity Pulsed Ultrasound (LIPUS) Increases the Articular Cartilage Type II Collagen in a Rat Osteoarthritis Model, Journal of Orthopaedic Research, vol. 28(3), 2010, s. 361–369.
  • [40] J. Hu, J. Qu, D. Xu, T. Zhang, L. Qin, H. Lu: Combined Application of Low-Intensity Pulsed Ultrasound and Functional Electrical Stimulation Accelerates Bone-Tendon Junction Healing in a Rabbit Model, Journal of Orthopaedic Research, vol. 32(2), 2014, s. 204–209.
  • [41] H. Omi, J. Mochida, T. Iwashina, R. Katsuno, A. Hiyama, T. Watanabe, K. Serigano, S. Iwabuchi, D. Sakai: Low-intensity pulsed ultrasound stimulation enhances TIMP-1 in nucleus pulposus cells and MCP-1 in macrophages in the rat, Journal of Orthopaedic Research, vol. 26(6), 2008, s. 865–871.
  • [42] S. Iwabuchi, M. Ito, J. Hata, T. Chikanishi, Y. Azuma, H. Haro: In vitro evaluation of low-intensity pulsed ultrasound in herniated disc resorption, Biomaterials, vol. 26(34), 2005, s. 7104–7114.
  • [43] J. Li, L.J. Waugh, S.L. Hui, D.B. Burr, S.J. Warden: Low-intensity pulsed ultrasound and nonsteroidal anti-inflammatory drugs have opposing effects during stress fracture repair, Journal of Orthopaedic Research, vol. 25(12), 2007, s. 1559–1567.
  • [44] Y. Takakura, N. Matsui, S. Yoshiya, H. Fujioka, H. Muratsu, M. Tsunoda, M. Kurosaka: Low-intensity pulsed ultrasound enhances early healing of medial collateral ligament injuries in rats, Journal of Ultrasound in Medicine, vol. 21(3), 2002, s. 283–288.
  • [45] S.D. Cook, S.L. Salkeld, L.P. Patron, E.S. Doughty, D.G. Jones: The effect of low-intensity pulsed ultrasound on autologous osteochondral plugs in a canine model, American Journal of Sports Medicine, vol. 36(9), 2008, s. 1733–1741.
  • [46] Y. Kinami, T. Noda, T. Ozaki: Efficacy of low-intensity pulsed ultrasound treatment for surgically managed fresh diaphyseal fractures of the lower extremity: multi-center retrospective cohort study, Journal of Orthopaedic Science, vol. 18(3), 2013, s. 410–418.
  • [47] J.D. Heckman, J.P. Ryaby, J. McCabe, J.J. Frey, R.F. Kilcoyne: Acceleration of tibial fracture-healing by noninvasive, low-intensity pulsed ultrasound, Journal of Bone and Joint Surgery, vol. 76A(1), 1994, s. 26–34.
  • [48] D. van der Windt, G. van der Heijden, S.G.M. van den Berg, G. ter Riet, A.F. de Winter, L.M. Bouter: Ultrasound therapy for musculoskeletal disorders: A systematic review, Pain, vol. 81(3), 1999, s. 257–271.
  • [49] W.H. Cheung, W.C. Chin, L. Qin, K.S. Leung: Low intensity pulsed ultrasound enhances fracture healing in both ovariectomy-induced osteoporotic and age-matched normal bones, Journal of Orthopaedic Research, vol. 30(1), 2012, s. 129–136.
  • [50] K. Kumagai, R. Takeuchi, H. Ishikawa, Y. Yamaguchi, T. Fujisawa, T. Kuniya, S. Takagawa, G. F. Muschler, T. Saito: Low-intensity pulsed ultrasound accelerates fracture healing by stimulation of recruitment of both local and circulating osteogenic progenitors, Journal of Orthopaedic Research, vol. 30(9), 2012, s. 1516–1521.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f2a898d-0192-4b2b-ae8c-55df8554c09d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.