Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The interval lattice Boltzmann method (ILBM) with an uncertainly defined internal heat source function is used to simulate heat transfer in a thin silicone film. The solution to the interval Boltzmann transport equations has been obtained taking into account the rules of directed interval arithmetics. A similar analysis has been done using the sensitivity model where the Boltzmann transport equations and boundary-initial conditions have been differentiated with respect to the no-interval heat source value. The knowledge of the sensitivity function distribution and the application of the Taylor formula allow one to find the border solutions of the problem analyzed, which (to some extent) correspond to the solution obtained under the assumption of the uncertainly defined source function. In the final part of the paper, numerical computations obtained for both methods are presented.
Czasopismo
Rocznik
Tom
Strony
167--175
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
- Silesian University of Technology, Institute of Computational Mechanics and Engineering, Gliwice
autor
- Silesian University of Technology, Institute of Computational Mechanics and Engineering, Gliwice
Bibliografia
- 1. Chonga W.T., Al-Mamoona A., Poha S.Ch., Sawb L.H., Shamshirbandc S., Mojumder J.Ch., 2016, Sensitivity analysis of heat transfer rate for smart roof design by adaptive neuro-fuzzy technique, Energy and Buildings, 124, 112-119
- 2. Dems K., Rousselet B., 1999, Sensitivity analysis for transient heat conduction in a solid body – Part I, Structural Optimization, 17, 36-45
- 3. Escobar R.A., Ghai S.S., Jhon M.S., Amon C.H., 2006, Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronics cooling, Journal of Heat and Mass Transfer, 49, 97-107
- 4. Eshraghi M., Felicelli S.D., 2012, An implicit lattice Boltzmann model for heat conduction with phase change, International Journal of Heat and Mass Transfer, 55, 2420-2428
- 5. Goethals K., Breeschb H., Janssens A., 2011, Sensitivity analysis of predicted night cooling performance to internal convective heat transfer modeling, Energy and Buildings, 43, 2429-2441
- 6. Huanga S.M., Sun Z., Luk’yanchuk B.S., Hong M.H., Shi L.P., 2005, Nanobump arrays fabricated by laser irradiation of polystyrene particle layers on silicon, Applied Physics Letters, 86, 161911
- 7. Hwang S., Son Ch., Seo D., Rhee D.H., Cha B., 2016, Comparative study on steady and unsteady conjugate heat transfer analysis of a high pressure turbine blade, Applied Thermal Engineering, 99, 765-775
- 8. Jasiński M., 2014, Modeling of tissue thermal injury formation process with application of direct sensitivity method, Journal of Theoretical and Applied Mechanics, 52, 4, 947-957
- 9. Joshi A.A., Majumdar A., 1993, Transient ballistic and diffusive phonon heat transport in thin films, Journal of Applied Physics, 74, 1, 31-39
- 10. Kałuża G., Majchrzak E., Turchan Ł., 2016, 1D generalized dual-phase lag equation. Sensitivity analysis with respect to the porosity, Journal of Applied Mathematics and Computational Mechanics, 15, 1, 49-58
- 11. Kleiber M., 1997, Parameter Sensitivity in Non-linear Mechanics, J. Willey & Sons, London
- 12. Majchrzak E., Mochnacki B., 2014, Sensitivity analysis of transient temperature field in microdomains with respect to the dual phase lag model parameters, International Journal for Multiscale Computational Engineering, 12, 1, 65-77
- 13. Mansoor S. Bin, Yilbas B.S., 2011, Laser short-pulse heating of silicon-aluminum thin films, Optical and Quantum Electronics, 42, 601-618
- 14. Mansoor S. Bin, Yilbas B.S., 2014, Phonon transport in aluminum and silicon film pair: laser short-pulse irradiation at aluminum film surface, Canadian Journal of Physics, 92, 12, 1614-1622
- 15. Markov S.M., 1995, On directed interval arithmetic and its applications, Journal of Universal Computer Science, 1, 514-526
- 16. Mochnacki B., Majchrzak E., 2007, Identification of macro and micro parameters in solidifi- cation model, Bulletin of the Polish Academy of Sciences, Technical Sciences, 55, 1, 107-113
- 17. Mohebbi F., Sellier M., 2016, Estimation of thermal conductivity, heat transfer coefficient, and heat flux using a three dimensional inverse analysis, International Journal of Thermal Sciences, 99, 258-270
- 18. Narumanchi S., Murthy J.Y., Amon C.H., 2003, Simulation of unsteady small heat source effects in sub-micron heat conduction, Journal of Heat Transfer, 123, 896-903
- 19. Neumaier A., 1990, Interval Methods for System of Equations, Cambridge University Press, Cambridge, New York, Port Chester, Melbourne, Sydney
- 20. Piasecka-Belkhayat A., 2011, Interval boundary element method for 2D transient diffusion problem using directed interval arithmetic, Engineering Analysis with Boundary Elements, 35, 3, 259-263
- 21. Piasecka-Belkhayat A., 2011, Interval boundary element method for transient diffusion problem in two-layered domain, Journal of Theoretical and Applied Mechanics, 49, 1, 265-276
- 22. Piasecka-Belkhayat A., Korczak A., 2014, Modelling of transient heat transport in one- -dimensional crystalline solids using the interval lattice Boltzmann method, Recent Advances in Computational Mechanics, T. Łodygowski, J. Rakowski and P. Litewka (Eds.), Taylor & Francis Group, A Balkema Book, London, 363-368
- 23. Piasecka-Belkhayat A., Korczak A., 2016, Numerical modelling of the transient heat transport in a thin gold film using the fuzzy lattice Boltzmann method with α-cuts, Journal of Applied Mathematics and Computational Mechanics, 15, 1, 123-135
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f2957c5-64a9-4243-a68f-bb167515573b