PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parallel and Serial Methods of Calculating Thermal Insulation in European Manikin Standards

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Standard No. EN 15831:2004 provides 2 methods of calculating insulation: parallel and serial. The parallel method is similar to the global one defined in Standard No. ISO 9920:2007. Standards No. EN 342:2004, EN 14058:2004 and EN 13537:2002 refer to the methods defined in Standard No. EN ISO 15831:2004 for testing cold protective clothing or equipment. However, it is necessary to consider several issues, e.g., referring to measuring human subjects, when using the serial method. With one zone, there is no serial–parallel issue as the results are the same, while more zones increase the difference in insulation value between the methods. If insulation is evenly distributed, differences between the serial and parallel method are relatively small and proportional. However, with more insulation layers overlapping in heavy cold protective ensembles, the serial method produces higher insulation values than the parallel one and human studies. Therefore, the parallel method is recommended for standard testing.
Rocznik
Strony
171--179
Opis fizyczny
Bibliogr. 39 poz., wykr.
Twórcy
autor
  • Department of Design Sciences, Lund University, Lund, Sweden
autor
  • Department of Design Sciences, Lund University, Lund, Sweden
autor
  • Department of Design Sciences, Lund University, Lund, Sweden
autor
  • Department of Design Sciences, Lund University, Lund, Sweden
Bibliografia
  • 1.Anttonen H, Niskanen J, Meinander H, Bartels V, Kuklane K, Reinertsen RE, et al. Thermal manikin measurements—exact or not? International Journal of Occupational Safety and Ergonomics (JOSE). 2004;10(3):291–300. Retrieved December 12, 2011, from: http://www.ciop.pl/10407.
  • 2.Bohm M, Noren O, Holmer I, Nilsson H. Development of standard test methods for evaluation of thermal climate in vehicles (Final Report on Project SMT4-CT95-2017). Uppsala, Sweden: Swedish Institute of Agricultural Engineering; 1999.
  • 3.American Society for Testing and Materials (ASTM). Standard test method for measuring the thermal insulation of clothing using a heated manikin (Standard No. ASTM-F 1291-10). Philadelphia, PA, USA: ASTM International; 2005.
  • 4.European Committee for Standardization (CEN). Protective clothing—ensembles and garments for protection against cold (Standard No. EN 342:2004). Brussels, Belgium: CEN; 2004.
  • 5.European Committee for Standardization (CEN). Protective gloves against cold (Standard No. EN 511:2006). Brussels, Belgium: CEN; 2006.
  • 6.International Organization for Standardization (ISO). Ergonomics of the thermal environment—evaluation of thermal environment in vehicles—part 2: determination of equivalent temperature (Standard No. ISO 14505-2:2003). Geneva, Switzerland: ISO; 2006.
  • 7.International Organization for Standardization (ISO). Ergonomics of the thermal environment—determination and interpretation of cold stress when using required clothing insulation (IREQ) and local cooling effects (Standard No. ISO 11079:2007). Geneva, Switzerland: ISO; 2007.
  • 8.International Organization for Standardization (ISO). Ergonomics of the thermal environment—estimation of thermal insulation and water vapour resistance of a clothing ensemble (Standard No. ISO 9920:2007). Geneva, Switzerland: ISO; 2007.
  • 9.European Committee for Standardization (CEN). Clothing—physiological effects—measurement of thermal insulation by means of a thermal manikin (Standard No. EN ISO 15831:2004). Brussels, Belgium: CEN; 2004.
  • 10.Nilsson H. Analysis of two methods of calculating the total insulation. In: Nilsson H, Holmer I, editors. A European Seminar on Thermal Manikin Testing. Solna, Sweden: National Institute for Working Life; 1997. p. 17–22.
  • 11.Redortier B. Experiences with manikin measurements at ITF Lyon. In: Nilsson H, Holmer I, editors. A European Seminar on Thermal Manikin Testing. Solna, Sweden: National Institute for Working Life; 1997. p. 30–7.
  • 12.Lee J-Y, Ko E-S, Lee H-H, Kim J-Y, Choi J-W. Validation of clothing insulation estimated by global and serial methods. International Journal of Clothing Science and Technology. 2011;23(2/3):184–98.
  • 13.Huang J. Calculation of thermal insulation of clothing from mannequin test. Measurement Techniques. 2008;51(4):428–35.
  • 14.Fan J, Chen Y. Measurement of clothing thermal insulation and moisture vapour resistance using a novel perspiring fabric thermal manikin. Measuring Science and Technology. 2002;13(7):1115–23.
  • 15.Kuklane K, Gao C, Holmer I, Giedraityte L, Brode P, Candas V, et al. Calculation of clothing insulation by serial and parallel methods: effects on clothing choice by IREQ and thermal responses in the cold. International Journal of Occupational Safety and Ergonomics (JOSE). 2007;13(2):103–16. Retrieved December 12, 2011, from: http://www.ciop.pl/21983.
  • 16.Gaspar AO, Oliveira AVM, Quintela D. Thermal insulation measurements with a movable thermal manikin. In: Castellani J, Endrusick TL, editors. 13th International Conference on Environmental Ergonomics (ICEE 2009) [CD-ROM]. Wollongong, NSW, Australia: University of Wollongong; 2009. p. 304–8. Retrieved December 12, 2011, from: http://www.lboro.ac.uk/microsites/lds/EEC/ICEE/textsearch/09proceedings/ICEE13-Proceedings.pdf.
  • 17.Konarska M, Sołtyński K, Sudoł-Szopińska I, Młoźniak D, Chojnacka A. Aspects of standardisation in measuring thermal clothing insulation on a thermal manikin. Fibres & Textiles in Eastern Europe. 2006;14(4):58–63. Retrieved December 12, 2011, from: http://www.fibtex.lodz.pl/58_16_58.pdf.
  • 18.Lee J-Y, Ko E-S, Lee H-H, Kim J-Y, Choi J-W. Serial and parallel method in calculating thermal insulation of single garments with a thermal manikin. In: Mekjavic IB, Kounalakis SN, Taylor NAS, editors. The 12th International Conference on Environmental Ergonomics. Ljubljana, Slovenia: Biomed; 2007. p. 430–3.
  • 19.Oliveira AV, Gaspar AR, Quintela DA. Measurements of clothing insulation with a thermal manikin operating under the thermal comfort regulation mode: comparative analysis of the calculation methods. Eur J Appl Physiol. 2008;104(4):679–88.
  • 20.Xu X, Endrusick T, Gonzalez J, Santee W, Hoyt R. Comparison of parallel and serial methods for determining clothing insulation. Journal of ASTM International. 2008;5(9)1–6.
  • 21.Bartels V, Umbach K. Measurement of the water vapour resistance of cold protective clothing by means of the skin model and a thermal mannequin. In: 2nd European Conference on Protective Clothing (ECPC) and NOKOBETEF 7: Challenges for Protective Clothing [CD-ROM]. St. Gallen, Switzerland: EMPA; 2003.
  • 22.Meinander H, Anttonen H, Bartels V, Holmer I, Reinertsen RE, Soltynski K, et al. Thermal insulation measurements of cold protective clothing using thermal manikins (SUBZERO project, final report). Tampere, Finland: Tampere University of Technology; 2003.
  • 23.Kuklane K, Heidmets S, Johansson T. Improving thermal comfort in an orthopaedic aid: Better Boston Brace for scoliosis patients. In: Fan J, editor. The 6th International Meeting on Manikins and Modelling (6I3M). Hong Kong: The Hong Kong Polytechnic University; 2006. p. 343–51.
  • 24.Anttonen H, Hellsten M, Bartels V, Kuklane K, Niskanen J. Report of the manikin measurements with analysis of the test results (SUBZERO project, D2). Oulu, Finland: Oulu Regional Institute of Occupational Health; 2002.
  • 25.Havenith G, Holmer I, Meinander H, den Hartog E, Richards M, Bröde P, et al. Assessment of thermal properties of protective clothing and their use (THERMPROTECT project, final technical report). Loughborough, UK: Loughborough University, Department of Human Sciences; 2006.
  • 26.European Committee for Standardization (CEN). Protective clothing—garments for protection against cool environments (Standard No. EN 14058:2004). Brussels, Belgium: CEN; 2004.
  • 27.European Committee for Standardization (CEN). Requirements for sleeping bags (Standard No. EN 13537:2002). Brussels, Belgium: CEN; 2002.
  • 28.Kuklane K, Dejke V. Testing sleeping bags according to EN 13537:2002: details that make the difference. International Journal of Occupational Safety and Ergonomics (JOSE). 2010;16(2):199–216. Retrieved December 12, 2011, from: http://www.ciop.pl/36567.
  • 29.Holmer I, Kuklane K, Subzero project group. Subzero project: validation of IREQ predictions with results from wearer trials and manikin measurements. In: 2nd European Conference on Protective Clothing (ECPC) and NOKOBETEF 7: Challenges for Protective Clothing [CD‑ROM]. St. Gallen, Switzerland; EMPA; 2003.
  • 30.Kuklane K, Holmer I, Rintamaki H, Makinen T, Faerevik H, Bartels V, et al. Subzero project: thermal insulation measurement of cold protective clothing using thermal manikins—physiological tests. In: 2nd European Conference on Protective Clothing (ECPC) and NOKOBETEF 7: Challenges for Protective Clothing [CD-ROM]. St. Gallen, Switzerland; EMPA; 2003.
  • 31.Kuklane K, Sandsund M, Reinertsen RE, Tochihara Y, Fukazawa T, Holmer I. Comparison of thermal manikins of different body shapes and size. Eur J Appl Physiol. 2004;92(6):683–8.
  • 32.Kuklane K. Heat loss from a thermal manikin during wet tests with walking simulation. In: The 7th International Meeting on Manikins and Modelling (7I3M) [CD-ROM]. Coimbra, Portugal: University of Coimbra, Faculty of Science and Technology; 2008.
  • 33.Kuklane K, Gao C, Holmer I, Brode P, Candas V, den Hartog E, et al. Measuring clothing insulation: analysis of human data based on manikin tests. In: Mekjavic IB, Kounalakis SN, Taylor NAS, editors. The 12th International Conference on Environmental Ergonomics. Ljubljana, Slovenia: Biomed; 2007. p. 434–7.
  • 34.Kuklane K, Gao C, Holmer I, Brode P, Candas V, den Hartog E, et al. Physiological responses at 10 and 25 °C in wet and dry underwear in permeable and impermeable coveralls. In: Mekjavic IB, Kounalakis SN, Taylor NAS, editors. The 12th International Conference on Environmental Ergonomics. Ljubljana, Slovenia: Biomed; 2007. p. 169–72.
  • 35.Ducharme MB, Brooks CJ. The effect of wave motion on dry suit insulation and the responses to cold water immersion. Aviat Space Environ Med. 1998;69(10):957–64.
  • 36.Dorman L, Havenith G. The effects of protective clothing on energy consumption during different activities. Eur J Appl Physiol. 2009;105(3):463–70.
  • 37.Afanasieva R, Bessonova N, Burmistrova O, Burmistrov V, Holmer I, Kuklane K. Comparative evaluation of the methods for determining thermal insulation of clothing ensemble on a manikin and person. In: Kuklane K, Holmer I, editors. Ergonomics of protective clothing. NOKOBETEF 6 and 1st European Conference on Protective Clothing (Arbete och Hälsa No. 2000:8). Stockholm, Sweden: National Institute for Working Life; 2000. p. 188–91.
  • 38.Afanasieva R, Bobrov A, Sokolov S. Cold assessment criteria and prediction of cooling risk in humans: the Russian perspective. Ind Health. 2009;47(3): 235–41.
  • 39.Holmer I, Gao C, Wang F. Can a vest provide 83 clo? – serial calculation method revisited [abstract]. In: Dezaire J, den Hartog E, Luiken A, editors. European Conference on Protective Clothing. Arnhem, The Netherlands: TNO; 2009. p. 12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f26d517-b580-40b8-af55-c250e98cfb86
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.