PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of data particle divide depth level on effectiveness of hypergeometrical divide classifier

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gravitational classifiers belong to the supervised machine learning area, and the basic element they process is a data particle. So far, many algorithms have been presented in the world literature. They focus on creating a data particle and determining its two important parameters – a centroid and a mass. Hypergeometrical divide is one of the latest algorithms in this group, which focuses on reducing the amount of processing data and keeping relevant information. The proportion of data to information depends on the data particle divide depth level. Its properties and application potential have been researched, and this article is the next step of the work. The research described in this article aimed to determine the relation of the depth level value of data particle divide to the effectiveness of the hypergeometrical divide algorithm. The research was conducted on 7 real data sets with different characteristics, applying methods and measures of evaluating artificial intelligence algorithms described in the literature. 63 measurements were performed. As a result, the effectiveness of the hypergeometrical divide method was defined at each of the available data particle divide depth levels for each of the used databases.
Rocznik
Strony
art. no. e152603
Opis fizyczny
Bibliogr. 42 poz., tab., wykr.
Twórcy
  • Military University of Technology, Faculty of Electronics, Warsaw, Poland
  • Military University of Technology, Faculty of Electronics, Warsaw, Poland
Bibliografia
  • [1] A. Kaplan and M. Haenlein, “Siri, Siri, in My Hand: Who’s the Fairest in the Land? On the Interpretations, Illustrations, and Implications of Artificial Intelligence,” Bus. Horiz., vol. 62, no. 1, pp. 15–25, 2019, doi: 10.1016/j.bushor.2018.08.004.
  • [2] N. Shedroff, “Information Interaction Design: A Unified Field Theory of Design,” in Information Design, 1st ed., R. Jacobson, Ed. Cambridge, MA, USA: MIT Press, 2000, pp. 267–292.
  • [3] Ł. Rybak, “Geometrical Division of Data Particle in Classification of Multidimensional Data Sets,” PhD Thesis, Lodz University of Technology, Lodz, Poland, September 2022.
  • [4] L. Peng, Y. Chen, B. Yang, and Z. Chen, “A Novel Classification Method Based on Data Gravitation,” in Proc. 2005 International Conference on Neural Networks and Brain, 2005, pp. 667–672, doi: 10.1109/ICNNB.2005.1614719.
  • [5] I. Newton. Matematyczne Zasady Filozofii Naturalnej, S. Brzezowski, Translator, Cracow, Poland: Cracow Copernicus Center Press, 2015.
  • [6] G.I. Webb, “Lazy Learning,” in Encyclopedia of Machine Learning and Data Mining. C. Sammut and G. Webb, Eds. Boston, USA: Springer, 2016, pp. 1–2, doi: 10.1007/978-1-4899-7502-7_449-1.
  • [7] E. Fix and J.L. Hodges, “Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties,” Int. Stat. Rev., vol. 57, no. 3, pp. 238–247, 1989, doi: 10.2307/1403797.
  • [8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” in Proc. Second International Conference on Knowledge Discovery and Data Mining, 1996, pp. 226–231, doi: 10.5555/3001460.3001507.
  • [9] M. Ankerst, M.M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS: ordering points to identify the clustering structure,” SIGMOD Rec., vol. 28, no. 2, pp. 49–60, 1999, doi: 10.1145/304181.304187.
  • [10] C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learn., vol. 20, pp. 273–297, 1995, doi: 10.1007/BF00994018.
  • [11] L. Breiman, J. Friedman, R. Olshen, and C. Stone, “Classification and Regression Trees,” Biometrics, vol. 40, no. 3, p. 874, 1984, doi: 10.2307/2530946.
  • [12] S. Theodoridis and K. Koutroumbas, “Chapter 1 – Introduction,” in Pattern Recognition. 4th ed., S. Theodoridis and K. Koutroumbas, Eds. Orlando, FL, USA: Academic Press, 2009, pp. 1–12, doi: 10.1016/B978-1-59749-272-0.50003-7.
  • [13] C. Liu, W. Wang, G. Tu, Y. Xiang, S. Wang, and F. Lv, “A new Centroid-Based Classification Model for Text Categorization,” Knowledge-Based Syst., vol. 136, pp. 15–26, 2017, doi: 10.1016/j.knosys.2017.08.020.
  • [14] Ł. Rybak and J. Dudczyk, “Various Approaches to Modelling of the Mass Using the Size of the Class in the Centroid Based Classification,” Elektronika – Konstrukcje, Technologie, Zastosowania, vol. 60, no. 6, pp. 62–65, 2019, doi: 10.15199/13.2019.6.13.
  • [15] J. Dudczyk and Ł. Rybak, “Application of Data Particle Geometrical Divide Algorithms in the Process of Radar Signal Recognition,” Sensors, vol. 23, no. 19, p. 8183, 2023, doi: 10.3390/s23198183.
  • [16] Y. Zhao, X. Wang, Z. Lin, and Z. Huang, “Multi-Classifier Fusion for Open-Set Specific Emitter Identification,” Remote Sens., vol. 14, no. 9, p. 2226, 2022, doi: 10.3390/rs14092226.
  • [17] C. Wang, Y. Wang, Y. Zhang, H. Xu, and Z. Zhang, “Open-Set Specific Emitter Identification Based on Prototypical Networks and Extreme Value Theory,” Appl. Sci., vol. 13, no. 6, p. 3878, 2023, doi: 10.3390/app13063878.
  • [18] R.G. Wiley. Electronic Intelligence: The Interception of Radar Signals, Dedham, MA, USA: Artech House Publishers, 1985.
  • [19] A. Alparslan and K. Yegin, “A Fast ELINT Receiver Design,” in Proc. 13th European Radar Conference. (EuRAD), 2016, pp. 217–220.
  • [20] V. Gautam and V. Shishodia, “The E-Intelligence System,” arXiv arXiv.2201.02590, 2022, doi: 10.48550/arXiv.2201.02590.
  • [21] B. Nguyen and R. Rom, “Communication Services Under EMCON,” SIGCOMM Comput. Commun. Rev., vol. 16, no. 3, pp. 275–281, 1986, doi: 10.1145/1013812.18203.
  • [22] D.-C. Li, Q.-S. Shi, Y.-S. Lin, and L.-S. Lin, “A Boundary-Information-Based Oversampling Approach to Improve Learning Performance for Imbalanced Datasets,” Entropy, vol. 24, no. 3, p. 322, 2022, doi: 10.3390/e24030322.
  • [23] D. Berrar, “Cross-Validation,” in Encyclopedia of Bioinformatics and Computational Biology. 1st ed., S. Ranganathan, M. Gribskov, K. Nakai and Ch. Schönbach, Eds. Elsevier, 2019, pp. 542–545, doi: 10.1016/b978-0-12-809633-8.20349-x.
  • [24] R.O. Duda, P.E. Hart, and D.G. Stork, “Introduction,” in Pattern Classification, 2nd ed., New York, NY, USA: Wiley-Interscience, 2000, pp. 1–19.
  • [25] I.K. Nti, O. Nyarko-Boateng, and J. Aning, “Performance of Machine Learning Algorithms with Different K Values in K-fold Cross-Validation,” Int. J. Inf. Technol. Comput. Sci., vol. 13, no. 6, 2021. pp. 61–71 doi: 10.5815/ijitcs.2021.06.05.
  • [26] M. Hossin, M. Sulaiman, A. Mustapha, N. Mustapha, and R. Rahmat, “A Hybrid Evaluation Metric for Optimizing Classifier,” in Proc. 3rd Conference on Data Mining and Optimization. (DMO), 2011, pp. 165–170, doi: 10.1109/DMO.2011.5976522.
  • [27] A. Kent, M. Berry, F.U. Luehrs, and J.W. Perry. “Machine literature searching VIII. Operational criteria for designing information retrieval systems,” J. Assoc. Inf. Sci. Technol., vol. 6, no. 2, pp. 93–101, 1955, doi: 10.1002/asi.5090060209.
  • [28] Y. Jiang, W. Li, and L. Liu, “R-CenterNet+: Anchor-Free Detector for Ship Detection in SAR Images,” Sensors, vol. 21, no. 17, p. 5693, 2021, doi: 10.3390/s21175693.
  • [29] Z.C. Lipton, C. Elkan, and B. Narayanaswamy, “Optimal Thresholding of Classifiers to Maximize F1 Measure,” in Machine Learning and Knowledge Discovery in Databases. 1st ed., T. Calders, F. Esposito, E. Hüllermeier and R. Meo, Eds. Berlin, Heidelberg, Germany: Springer, 2014, pp. 225–239, doi: 10.1007/978-3-662-44851-9_15.
  • [30] P. Flach and M. Kull, “Precision-Recall-Gain Curves: PR Analysis Done Right,” in Proc. 28th International Conference on Neural Information Processing Systems. (NIPS 2015), 2015, pp. 838–846, doi: 10.5555/2969239.2969333.
  • [31] V. Lohweg, “Banknote authentication.” UCI Machine Learning Repository. [Online]. Available: https://archive.ics.uci.edu/dataset/267/banknote+authentication (Accessed: 12. Nov. 2023), doi: 10.24432/C55P57.
  • [32] N. Ghasem Abadi, “Machine Learning-based Authentication of Banknotes: A Comprehensive Analysis,” Big Data Comput. Visions, vol. 4, no. 1, pp. 22–30, 2024, doi: 10.22105/bdcv.2024.197120.
  • [33] R.A. Fisher, “iris.” UCI Machine Learning Repository. [Online]. Available: https://archive.ics.uci.edu/dataset/53/iris (Accessed: 12. Nov. 2023), doi: 10.24432/C56C76.
  • [34] R. Bock, “MAGIC Gamma Telescope.” UCI Machine Learning Repository. [Online]. Available: https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope (Accessed: 12. Nov. 2023), doi: 10.24432/C52C8B.
  • [35] D. Heck, J. Knapp, J.N. Capdevielle, G. Schatz, and T. Thouw, “CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers,” Technical Note, FZKA 6019, Forschungszentrum, Karlsruhe, Germany, 1998, doi: 10.5445/IR/270043064.
  • [36] L. Candanedo, “Occupancy Detection.” UCI Machine Learning Repository. [Online] Available: https://archive.ics.uci.edu/dataset/357/occupancy+detection (Accessed: 12. Nov. 2023), doi: 10.24432/C5X01N.
  • [37] L. Candanedo and V. Feldheim, “Accurate Occupancy Detection of an Office Room From Light, Temperature, Humidity and CO2 Measurements Using Statistical Learning Models,” Energy Build., vol. 112, pp. 28–39, 2016, doi: 10.1016/J.ENBUILD.2015.11.071.
  • [38] M. Little, “Parkinsons.” UCI Machine Learning Repository. [Online]. Available: https://archive.ics.uci.edu/dataset/174/parkinsons (Accessed: 12. Nov. 2023), doi: 10.24432/C59C74.
  • [39] M.A. Little, P.E. McSharry, E.J. Hunter, J. Spielman, and L.O. Ramig, “Suitability of Dysphonia Measurements for Telemonitoring of Parkinson’s Disease,” IEEE Trans. Biomed. Eng., vol. 56, no. 4, pp. 1015–1022, 2009, doi: 10.1109/TBME.2008.2005954.
  • [40] T. Sejnowski and R. Gorman, “Connectionist Bench (Sonar, Mines vs. Rocks).” UCI Machine Learning Repository. [Online]. Available: https://archive.ics.uci.edu/dataset/151/connectionist+bench+sonar+mines+vs+rocks (Accessed: 12. Nov. 2023), doi: 10.24432/C5T01Q.
  • [41] R. Bhatt, “Wireless Indoor Localization.” UCI Machine Learning Repository. [Online]. Available: https://archive.ics.uci.edu/dataset/422/wireless+indoor+localization (Accessed: 12 Nov. 2023), doi: 10.24432/C51880.
  • [42] M. Kelly, R. Longjohn, and K. Nottingham, “The UCI Machine Learning Repository.” [Online]. Available: https://archive.ics.uci.edu (Accessed: 12. Nov. 2023).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f26c5b9-3d34-4849-bceb-5b4cf79e4114
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.