PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ocena właściwości antykorozyjnych powłok konwersyjnych wytworzonych na magnezie i jego stopach w procesie elektrolitycznego utleniania plazmowego– przegląd

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Assessment of anti-corrosion properties of conversion coatings produced on magnesium and its alloys in the process of plasma electrolytic oxidation – review
Języki publikacji
PL
Abstrakty
PL
W pracy wskazano na wciąż duże zainteresowanie magnezem i jego stopami z Al, Zn, Mn, Zr oraz pierwiastkami ziem rzadkich oraz krótko opisano kierunki aktualnych badań dotyczących metody elektrolitycznego utleniania plazmowego (PEO) jako metody zwiększającej odporność antykorozyjną stopów magnezu. Zaprezentowano metody pomiarowe służące do oceny właściwości antykorozyjnych powłok konwersyjnych wytworzonych w procesie PEO na magnezie i jego stopach. Opisano zalety i wady metod nieelektrochemicznych i elektrochemicznych, w tym: test w komorze solnej, test zanurzeniowy (ocena wyglądu, ubytek masy, zbieranie wodoru) oraz pomiary potencjału obwodu otwartego (OCP), polaryzacji potencjodynamicznej (PDP), analizę Motty-Schottky’ego oraz elektrochemiczną spektroskopię impedancyjną (EIS). Wykazano przewagę techniki EIS nad niszczącymi pomiarami elektrochemicznymi, która pozwala na prowadzenie nieniszczących pomiarów długoterminowych wytworzonych powłok ochronnych. Dokonano przeglądu roztworów korozyjnych, najczęściej stosowanych do oceny właściwości antykorozyjnych powłok konwersyjnych oraz wskazano rozcieńczony roztwór Harrisona (DHS), jako odpowiednie medium do badań cienkich powłok (~10 μm) wytworzonych metodą PEO na stopach magnezu przeznaczonych do zastosowań w warunkach przemysłowych. Zwrócono uwagę na konieczność właściwego doboru czasu trwania pomiarów korozyjnych w zależności od właściwości powłoki oraz jej potencjalnego zastosowania.
EN
The paper shows the unfailing interest in magnesium and its alloys with Al, Zn, Mn, Zr and rare earth elements, and briefly describes the directions of current research on the method of plasma electrolytic oxidation (PEO) as a method of increasing the corrosion resistance of magnesium alloys. The measurement methods for the assessment of anti-corrosion properties of conversion coatings produced in the PEO process on magnesium and its alloys are presented. Described are the advantages and disadvantages of non-electrochemical and electrochemical methods, including: salt spray test, immersion test (assessment of appearance, weight loss, hydrogen collection) and measurements of the open circuit potential (OCP), potentiodynamic polarization (PDP), Motta-Schottky analysis and electrochemical impedance spectroscopy (EIS). The advantage of the EIS technique over destructive electrochemical measurements has been demonstrated, which allows for non-destructive long-term measurements of the produced protective coatings. The most common corrosive solutions used to assess the anti-corrosive properties of conversion coatings were reviewed and the diluted Harrison solution (DHS) was indicated as a suitable medium for testing thin coatings (~10 μm) produced by the PEO method on magnesium alloys intended for use in industrial conditions. The necessity of proper selection of the duration of corrosion measurements depending on the properties of the coating and its potential application has been pointed out.
Rocznik
Tom
Strony
320--331
Opis fizyczny
Bibliogr. 103 poz., fot., wykr.
Twórcy
  • Politechnika Rzeszowska, Wydział Chemiczny
Bibliografia
  • [1] Sameer Kumar, D., Magnesium and Its Alloys in Automotive Applications – A Review. American Journal of Materials Science and Technology, 2015. 4: 12-30.
  • [2] Dziubińska, A., Gontarz, A., Dziubański, M., Barszcz, M., The forming of magnesium alloy forgings for aircraft and automotive applications. Advances in Science and Technology Research Journal, 2016. 10(31): 158-168.
  • [3] Chalisgaonkar, R., Insight in applications, manufacturing and corrosion behaviour of magnesium and its alloys – A review. Materials Today: Proceedings, 2020. 26: 1060-1071.
  • [4] Sezer, N., Evis, Z., Koc, M., Additive manufacturing of biodegradable magnesium implants and scaffolds: Review of the recent advances and research trends. Journal of Magnesium and Alloys, 2021. 9(2): 392-415.
  • [5] Ali, M., Hussein, M.A., Al-Aqeeli, N., Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties. Journal of Alloys and Compounds, 2019. 792: 1162-1190.
  • [6] Zeng, R.C., Zhang, J., Huang, W.J., Dietzel, W., Kainer, K.U., Blatwert, C., Ke, W., Review of studies on corrosion of magnesium alloys. Transactions of Nonferrous Metals Society of China, 2006. 16: 763-771.
  • [7] Gray, J.E., Luan, B., Protective coatings on magnesium and its alloys — a critical review. Journal of Alloys and Compounds, 2002. 336(1): 88-113.
  • [8] Wu, C.Y., Zhang, J., State-of-art on corrosion and protection of magnesium alloys based on patent literatures. Transactions of Nonferrous Metals Society of China, 2011. 21(4): 892-902.
  • [9] Yin, Z.Z., Qi, W.C., Zeng R.C., Chen X.B., Gu, C.D., Guan, S.K., Zheng, Y.F., Advances in coatings on biodegradable magnesium alloys. Journal of Magnesium and Alloys, 2020. 8(1): 42-65.
  • [10] Heimann, R.B., Magnesium alloys for biomedical application: Advanced corrosion control through surface coating. Surface and Coatings Technology, 2021. 405: 126521, 1-15.
  • [11] Predko, P., Rajnovic, D., Grilli, M.L., Postolnyi, B.O., Zemcenkovs, V., Rijkuris, G., Pole, E., Lisnanskis, M., Promising Methods for Corrosion Protection of Magnesium Alloys in the Case of Mg-Al, Mg-Mn-Ce and Mg-Zn-Zr: A Recent Progress Review. Metals, 2021. 11(7): 1133, 1-37.
  • [12] Rozporządznie nr 895/2014 UE i REACH.
  • [13] Barati Darband, G., Aliofkhazraei, M., Hamghalam, P., Valizade, N., Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. Journal of Magnesium and Alloys, 2017. 5(1): 74-132.
  • [14] Florczak, Ł., Nawrat, G., Kwolek, P., Sieniawski, J., Sobkowiak, A., Plazmowe utlenianie elektrolityczne jako metoda ochrony przed korozją magnezu i jego stopow. Przemysł Chemiczny, 2018. 97(12): 2145-2153.
  • [15] Sampatirao, H., Radhakrishnapillai, S., Dondapati, S., Parfenov, E., Nagumothu, R., Developments in plasma electrolytic oxidation (PEO) coatings for biodegradable magnesium alloys. Materials Today: Proceedings, 2021. 46: 1407-1415.
  • [16] www.webofscience.com (31.07.2021).
  • [17] www.sciencedirect.com (31.07.2021).
  • [18] Chen, M., Ma, Y., Hao, Y., Local arc discharge mechanism and requirements of power supply in micro-arc oxidation of magnesium alloy. Frontiers of Mechanical Engineering in China, 2010. 5(1): 98-105.
  • [19] Hussein, R.O., Northwood, D.O., Nie, X., The influence of pulse timing and current mode on the microstructure and corrosion behaviour of a plasma electrolytic oxidation (PEO) coated AM60B magnesium alloy. Journal of Alloys and Compounds, 2012. 541: 41-48.
  • [20] Rapheal, G., Kumar, S., Scharnagl, N., Blawert, C., Effect of current density on the microstructure and corrosion properties of plasma electrolytic oxidation (PEO) coatings on AM50 Mg alloy produced in an electrolyte containing clay additives. Surface and Coatings Technology, 2016. 289: 150-164.
  • [21] Zou, B., Lu, G.H., Zhang, G.L., Tian, Y.Y., Effect of current frequency on properties of coating formed by microarc oxidation on AZ91D magnesium alloy. Transactions of Nonferrous Metals Society of China, 2015. 25(5): 1500-1505.
  • [22] Dehnavi, V., Luan, B.L., Shoesmith, D.W., Liu, X.Y., Rohani, S., Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior. Surface and Coatings Technology, 2013. 226: 100- 107.
  • [23] Duan, H., Yan, C., Wang, F., Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution. Electrochimica Acta, 2007. 52(15): 5002-5009.
  • [24] Zhang, S.F., Hu, G.H., Zhang, R.F., Jia, Z.X., Wang, L.J., Wang, Y.J., Hu, C.Y., He, X.M., Effects of electric parameters on corrosion resistance of anodic coatings formed on magnesium alloys. Transactions of Nonferrous Metals Society of China, 2010. 20: 660-664.
  • [25] Wang, L., Chen, L., Yan, Z., Wang, H., Peng, J., Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy. Journal of Alloys and Compounds, 2009. 480: 469-474.
  • [26] Zhao, L., Cui, C., Wang, Q., Bu, S., Growth characteristics and corrosion resistance of micro-arc oxidation coating on pure magnesium for biomedical applications. Corrosion Science, 2010. 52: 2228-2234.
  • [27] Fattah-alhosseini, A., Chaharmahali, R., Babaei, K., Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: A review. Journal of Magnesium and Alloys, 2020. 8: 799-818.
  • [28] Molaei, M., Babaei, K., Fattah-Alhosseini, A., Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano- and micro-sized additives into the electrolytes: A review. Journal of Magnesium and Alloys, 2021. 9: 1164-1186.
  • [29] Toorani, M., Aliofkhazraei, M., Review of electrochemical properties of hybrid coating systems on Mg with plasma electrolytic oxidation process as pretreatment. Surfaces and Interfaces, 2019. 14: 262-295.
  • [30] Lu, X., Ma, J., Mohedano, M., Pillado, B., Arrabal, R., Qian, K., Li, Y., Zhang, T., Wang, F., Ca-based sealing of plasma electrolytic oxidation coatings on AZ91 Mg alloy. Surface and Coatings Technology, 2021. 417:127220, 1-12.
  • [31] Phuong, N.V., Fazal, B.R., Moon, S., Cerium- and phosphate-based sealing treatments of PEO coated AZ31 Mg alloy. Surface and Coatings Technology, 2017. 309: 86-95.
  • [32] Ivanou, D.K., Yasakau, K.A., Kallip, S., Lisenkov, A.D., Starykevich, M., Lamaka, S.V., Ferreira, M,G,S., Zheludkevich, M.L., Active corrosion protection coating for a ZE41 magnesium alloy created by combining PEO and sol–gel techniques. RSC Advances, 2016. 6(15): 12553-12560.
  • [33] Gnedenkov, S.V., Sinebryukhov, S.L., Mashtalyaar, D.V., Imshinetskiy, I.M., Composite fluoropolymer coatings on Mg alloys formed by plasma electrolytic oxidation in combination with electrophoretic deposition. Surface and Coatings Technology, 2015. 283: 347-352.
  • [34] Yang, J., Di, S., Blawert, C., Lamaka, S.L., Wang, L., Fu, B., Jiang, P., Wang, L., Zheludkevich, L., Enhanced Wear Performance of Hybrid Epoxy-Ceramic Coatings on Magnesium Substrates. ACS Applied Materials & Interfaces, 2018. 10(36): 30741-30751.
  • [35] Chen, Y., Lu, X., Lamaka, S.V., Ju, P., Blawert, C., Zhang, T., Wang, F., Zheludkevich, M.L., Active protection of Mg alloy by composite PEO coating loaded with corrosion inhibitors. Applied Surface Science, 2020. 504: 144462, 1-10.
  • [36] Lin, Z., Wang, T., Yu, X., Sun, X., Yang, H., Functionalization treatment of micro- -arc oxidation coatings on magnesium alloys: a review. Journal of Alloys and Compounds, 2021. 879: 160453, 1-9.
  • [37] Yeganeh, M., Mohammadi, M., Superhydrophobic surface of Mg alloys: A review. Journal of Magnesium and Alloys, 2018. 6: 59-70.
  • [38] www.keronite.com (31.07.2021).
  • [39] Zhang, R.F., Shan, D.Y., Chen, R.S., Han, E.H., Effects of electric parameters on properties of anodic coatings formed on magnesium alloys. Materials Chemistry and Physics, 2008. 107: 356-363.
  • [40] Hwang, D.Y., Kim, Y.M., Shin, D.H., Corrosion Resistance of Plasma-Anodized AZ91 Mg Alloy in the Electrolyte with/without Potassium Fluoride. Materials Transactions, 2009. 50(3): 671-678.
  • [41] Hwang, D.Y., Kim, Y.M., Park, D.Y., Yoo, B.Y., Shin, D.H., Corrosion resistance of oxide layers formed on AZ91 Mg alloy in KMnO4 electrolyte by plasma electrolytic oxidation. Electrochimica Acta, 2009. 54: 5479-5485.
  • [42] Mingo, B., Arrabal, R., Mohedano, M., Llamazares, Y., Matykina, E., Yerokhin, A., Pardo, A., Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy. Applied Surface Science, 2018. 433: 653-667.
  • [43] Bordbar-Khiabani, A., Yarmand, B., Mozafari, M., Enhanced corrosion resistance and in-vitro biodegradation of plasma electrolytic oxidation coatings prepared on AZ91 Mg alloy using ZnO nanoparticles-incorporated electrolyte. Surface and Coatings Technology, 2019. 360: 153-171.
  • [44] Jiang, J., Zhou, Q., Yu, J., Ma, A., Song, D., Lu, F., Zhang, L., Yang, D., Chen, J., Comparative analysis for corrosion resistance of micro-arc oxidation coatings on coarse-grained and ultra-fine grained AZ91D Mg alloy. Surface and Coatings Technology, 2013. 216: 259-266.
  • [45] Shi, Z., Atrens, A., An innovative specimen configuration for the study of Mg corrosion. Corrosion Science, 2011. 53: 226-246.
  • [46] Atrens, A., Dong, G.L., Shi, Z., Soltan, A., Johnston, S., Dargusch, M.S., Understanding the Corrosion of Mg and Mg Alloys, w Encyclopedia of Interfacial Chemistry, Wandelt K., Editor. 2018, Elsevier: Oxford. 515-534.
  • [47] Tang, H., Han, Y., Wu, T., Tao, W., Jina, X., Wu, Y., Xu, F., Synthesis and properties of hydroxyapatite-containing coating on AZ31 magnesium alloy by micro-arc oxidation. Applied Surface Science, 2017. 400: 391-404.
  • [48] Yu, W., Sun, R., Guo, Z., Wang, Z., He, Y., Lu, G., Chen, P., Chen, K., Novel fluoridated hydroxyapatite/MAO composite coating on AZ31B magnesium alloy for biomedical application. Applied Surface Science, 2019. 464: 708-715.
  • [49] Yang, J., Lu, X., Blawert, C., Di, S., Zheludkevich, K.L., Microstructure and corrosion behavior of Ca/P coatings prepared on magnesium by plasma electrolytic oxidation. Surface and Coatings Technology, 2017. 319: 359-369.
  • [50] Zhang, Z.Q., Wang, L., Zeng, M.Q., Zeng, R.C., Lin, C.G., Wang, Z.L., Chen, D.C., Zhang, Q., Corrosion resistance and superhydrophobicity of one-step polypropylene coating on anodized AZ31 Mg alloy. Journal of Magnesium and Alloys, 2021. 9: 1443-1457.
  • [51] Wang, C., Jiang, B., Liu, M., Ge, Y., Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy. Journal of Alloys and Compounds, 2015. 621: 53-61.
  • [52] Jang, Y., Tan, Z., Jurey, C., Collins, B., Badve, A., Dong, Z., Park, C, Kim, C.S., Sankar, J., Yun, Y., Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant. Materials Science and Engineering: C, 2014. 45: 45- 55.
  • [53] Song, G., Atrens, A., StJohn D., An Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys, w Magnesium Technology 2001. Hryn J., Editor. 2001, TMS, 255-262.
  • [54] Liang, J., Bala Srinivasan, P., Blawert, C., Stormer, M., Dietzel, W., Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes. Electrochimica Acta, 2009. 54(14): 3842-3850.
  • [55] Zhang, Y., Yan, C., Wang, F., Li, W., Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution. Corrosion Science, 2005. 47: 2816-2831.
  • [56] Gao, Y., Yerokhin, A., Parfenov, E., Matthews, A., Application of Voltage Pulse Transient Analysis during Plasma Electrolytic Oxidation for Assessment of Characteristics and Corrosion Behaviour of Ca- and P-containing Coatings on Magnesium. Electrochimica Acta, 2014. 149: 218-230.
  • [57] Gnedenkov, A.S., Lamaka, S.V., Sinebryukhov, S.L., Mashtalyar, D.V., Egorkin, V.S., Imshinetskiy, M., Zheludkevich, M.L., Gnedenkov, S.V., Control of the Mg alloy biodegradation via PEO and polymer-containing coatings. Corrosion Science, 2021. 182: 109254, 1-19.
  • [58] Cui, X.J., Li, M.T., Yang., R.S., Yu, Z.X., Structure and properties of a duplex coating combining micro-arc oxidation and baking layer on AZ91D Mg alloy. Applied Surface Science, 2016. 363: 91-100.
  • [59] Buchanan, R.A. Stansbury, E.E., 4 - Electrochemical Corrosion, w Handbook of Environmental Degradation of Materials (Second Edition), Kutz M., Editor. 2012, William Andrew Publishing: Oxford. 87-125.
  • [60] Stern, M. Geaby, A.L., Electrochemical Polarization. Journal of The Electrochemical Society, 1957. 104(1): 56-63.
  • [61] Gu, Y., Bandopadhyay, S., Chen, C.F., Gui, Y., Ning, C., Effect of oxidation time on the corrosion behavior of micro-arc oxidation produced AZ31 magnesium alloys in simulated body fluid. Journal of Alloys and Compounds, 2012. 543: 109-117.
  • [62] Madhan Kumar, A., Kwon, S.H., Jung, H.C., Shin, K.S., Corrosion protection performance of single and dual Plasma Electrolytic Oxidation (PEO) coating for aerospace applications. Materials Chemistry and Physics, 2014. 149-150: 480-486.
  • [63] Barchiche, C.E., Rocca, E., Hazan, J., Corrosion behaviour of Sn-containing oxide layer on AZ91D alloy formed by plasma electrolytic oxidation. Surface and Coatings Technology, 2008. 202: 4145-4152.
  • [64] Liang, J., Bala Srinivasan, P., Blawert, C., Dietzel, W., Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation. Corrosion Science, 2009. 51: 2483-2492.
  • [65] Durdu, S., Aytac, A., Usta, M., Characterization and corrosion behavior of ceramic coating on magnesium by micro-arc oxidation. Journal of Alloys and Compounds, 2011. 509: 8601-8606.
  • [66] Zhang, Z.Q., Yang, Y.X., Li, J.A., Zeng, R.C., Guan, S.K., Advances in coatings on magnesium alloys for cardiovascular stents – A review. Bioactive Materials, 2021. 6: 4729-4757.
  • [67] Moon, S., Corrosion behavior of PEO-treated AZ31 Mg alloy in chloride solution. Journal of Solid State Electrochemistry, 2014. 18: p. 341-346.
  • [68] Li, Z., Yuan, Y., Jing, X., Effect of current density on the structure, composition and corrosion resistance of plasma electrolytic oxidation coatings on Mg–Li alloy. Journal of Alloys and Compounds, 2012. 541: 380-391.
  • [69] Sampatirao, H., Amruthaluru, S., Chennampalli, P., Lingamaneni, R.K., Nagumoth, R., Fabrication of ceramic coatings on the biodegradable ZM21 magnesium alloy by PEO coupled EPD followed by laser texturing process. Journal of Magnesium and Alloys, 2021. 9: 910-926.
  • [70] Kirkland, N., Birbilis, N., Staiger, M., Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta biomaterialia, 2011. 8: 925-936.
  • [71] Shi, Z., Liu, M., Atrens, A.,Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corrosion Science, 2010. 52: 579-588.
  • [72] Toorani, M., Aliofkhazraei, M., Sabour Rouhaghdam, A., Microstructural, protective, inhibitory and semiconducting properties of PEO coatings containing CeO2 nanoparticles formed on AZ31 Mg alloy. Surface and Coatings Technology, 2018. 352: 561-580.
  • [73] Darowicki, K., Krakowiak, S., Ślepski, P., Selection of measurement frequency in Mott–Schottky analysis of passive layer on nickel. Electrochimica Acta, 2006. 51: 2204-2208.
  • [74] Toorani, M., Aliofkhazraei, M., Mahdavian, M., Naderi, R., Superior corrosion protection and adhesion strength of epoxy coating applied on AZ31 magnesium alloy pre-treated by PEO/Silane with inorganic and organic corrosion inhibitors. Corrosion Science, 2021. 178: 109065, 1-16.
  • [75] Li, Z., Yuan, Y., Jing, X., Composite coatings prepared by combined plasma electrolytic oxidation and chemical conversion routes on magnesium-lithium alloy. Journal of Alloys and Compounds, 2017. 706: 419-429.
  • [76] Mohedano, M., Blawert, C., Zheludkevich, M.L., Cerium-based sealing of PEO coated AM50 magnesium alloy. Surface and Coatings Technology, 2015. 269: 145-154.
  • [77] Muhaffel, F., Mert, F., Cimenoglu, H., Hoche, D., Zheludkevich, M.L., Blawert, C., Characterisation and corrosion behaviour of plasma electrolytic oxidation coatings on high pressure die cast Mg–5Al–0.4Mn–xCe (x=0, 0.5, 1) alloys. Surface and Coatings Technology, 2015. 269: 200-211.
  • [78] King, A.D., Birbilis, N., Scully, J.R., Accurate Electrochemical Measurement of Magnesium Corrosion Rates; a Combined Impedance, Mass-Loss and Hydrogen Collection Study. Electrochimica Acta, 2014. 121: 394-406.
  • [79] Shahri, Z., Allahkaram, S.R., Soltani, R., Jafari, H., Optimization of plasma electrolyte oxidation process parameters for corrosion resistance of Mg alloy. Journal of Magnesium and Alloys, 2020. 8: 431-440.
  • [80] Gaweł, Ł., Nieużyła, Ł., Nawrat, G., Darowicki, K., Ślepski, P., Impedance monitoring of corrosion degradation of plasma electrolytic oxidation coatings (PEO) on magnesium alloy. Journal of Alloys and Compounds, 2017. 722: 406-413.
  • [81] Macdonald, D.D., Sikora, E., Engelhardt, G., Characterizing electrochemical systems in the frequency domain. Electrochimica Acta, 1998. 43(1): 87-107.
  • [82] Shahri, Z., Allahkaram, S.R., Soltani, R., Jafari, H., Study on corrosion behavior of nano-structured coatings developed on biodegradable as cast Mg–Zn–Ca alloy by plasma electrolyte oxidation. Surface and Coatings Technology, 2018. 347: 225-234.
  • [83] Bordbar-Khiabani, A., Ebrahimi, S., Yarmand, B., In-vitro corrosion and bioactivity behavior of tailored calcium phosphate-containing zinc oxide coating prepared by plasma electrolytic oxidation. Corrosion Science, 2020. 173: 108781, 1-14.
  • [84] Cai, Q., Wang, L., Bokang, W., Liu, Q., Electrochemical performance of microarc oxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes. Surface and Coatings Technology, 2006. 200: 3727-3733.
  • [85] Guo, H.X., Ma, Y., Wang, J.S., Wang, Y.S., Dong, H.R., Hao, Y., Corrosion behavior of micro-arc oxidation coating on AZ91D magnesium alloy in NaCl solutions with different concentrations. Transactions of Nonferrous Metals Society of China, 2012. 22: 1786-1793.
  • [86] Liang, J., Bala Srinivasan, P., Blawert, C., Dietzel, W., Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy. Electrochimica Acta, 2010. 55: 6802-6811.
  • [87] Parichehr, R., Dehghanian, C., Nikbakht, A., Preparation of PEO/silane composite coating on AZ31 magnesium alloy and investigation of its properties. Journal of Alloys and Compounds, 2021. 876: 159995, 1-15.
  • [88] Staiger, M.P., Pietak, A.M., Huadmai, J., Dias, G., Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 2006. 27: 1728-1734.
  • [89] Atapour, M., Blawert, C., Zheludkevich, M.L., The wear characteristics of CeO2 containing nanocomposite coating made by aluminate-based PEO on AM 50 magnesium alloy. Surface and Coatings Technology, 2019. 357: 626-637.
  • [90] Pezzato, L., Angelini, V., Brunelli, K., Martini, C., Dabala, M., Tribological and corrosion behavior of PEO coatings with graphite nanoparticles on AZ91 and AZ80 magnesium alloys. Transactions of Nonferrous Metals Society of China, 2018. 28: 259-272.
  • [91] Pezzato, L., Rigon, M., Martucci, A., Brunelli, K., Dabala, M., Plasma Electrolytic Oxidation (PEO) as pre-treatment for sol-gel coating on aluminum and magnesium alloys. Surface and Coatings Technology, 2019. 366: 114-123.
  • [92] Citterio, G., Trasatti, S.P., Trueba, M., Bestetti, M., Da Forno, A., An electrochemical impedance study of bare and anodized AZ31 Mg alloy in dilute Harrison solution. Surface and Coatings Technology, 2014. 254: 217-223.
  • [93] Florczak, Ł., Sobkowiak, A., Nawrat, G., Wpływ heksafluoroantymonianu sodu na właściwości powłok konwersyjnych wytworzonych podczas elektrolitycznego utleniania plazmowego stopu magnezu. Przemysł Chemiczny, 2016. 95(7): 1414-1419.
  • [94] Harrison, J.B.,Tickle, T.C.K., New Aspects of the Atmospheric Corrosion of Steel and their Implications. Journal of the Oil & Colour Chemists Association 1962. 45: 571-597.
  • [95] Ge, F., Yin, J., Liu, Y., Leng, W., Wang, X., Cui, Z., Roles of pH in the NH4+-induced corrosion of AZ31 magnesium alloy in chloride environment. Journal of Magnesium and Alloys, 2021 (w przygotowaniu).
  • [96] Wang, H., Shi, Z.M., Yang, K., Magnesium and Magnesium Alloys as Degradable Metallic Biomaterials. Advanced Materials Research, 2008. 32: 207-210.
  • [97] Kokubo, T. Takadama, H., How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006. 27: 2907-2915.
  • [98] Tian, P., Xu, D., Liu, X., Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy. Colloids and Surfaces B: Biointerfaces, 2016. 141: 327-337.
  • [99] Gao, Y., Yerokhin, A., Matthews, A., DC plasma electrolytic oxidation of biodegradable cp-Mg: In-vitro corrosion studies. Surface and Coatings Technology, 2013. 234: 132-142.
  • [100] Ly, X.N.,Yang, S., Influence of current mode on microstructure and corrosion behavior of micro-arc oxidation (MAO) biodegradable Mg-Zn-Ca alloy in Hank’s solution. Surface and Coatings Technology, 2019. 358: 331-339.
  • [101] Tang, H., Wu, T., Wang, H., Jian, X., Wu, Y., Corrosion behavior of HA containing ceramic coated magnesium alloy in Hank’s solution. Journal of Alloys and Compounds, 2017. 698: 643-653.
  • [102] Li, Z., Yu, Q, Zhang, C., Liu, Y., Liang, J., Wang, D., Synergistic effect of hydrophobic film and porous MAO membrane containing alkynol inhibitor for enhanced corrosion resistance of magnesium alloy. Surface and Coatings Technology, 2019. 357: 515-525.
  • [103] Arrabal, R., Mota, J.M., Criado, A., Pardo, A., Mohedano, M., Matykina, E., Assessment of duplex coating combining plasma electrolytic oxidation and polymer layer on AZ31 magnesium alloy. Surface and Coatings Technology, 2012. 206: 4692-4703.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f264cd4-5bbb-4a63-be43-54eea08649bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.