PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Use of the Biologically Active Substances in Alleviating the Stress Caused by Lead in Barley Seedling on the Basis of Biochemical and Physiological Parameters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plants are constantly exposed to a variety of stressors during their lives. One of such stressors is contamination of the environment with heavy metals. Lead is one of highly toxic metals and it significantly inhibits normal plant growth. The study aimed at assessing the degree of relieving the stress caused by 1 mM Pb(NO3)2 via different biologically active substances (AsA, GSH, PP, α-Toc, SA) on the basis of the measurement of morphological (root length, coleoptile length, fresh weight), biochemical (Pro, MDA, CAT, POX) and physiological (Chl a+b, Car) traits in 10-day leaves of spring barley of the cultivar Eunova under laboratory conditions. Pb-stress reduced the fresh weight, root length and coleoptiles of the barley tested. Lead increased lipid peroxidation and Pro content, enhanced CAT and POX activity, and significantly suppressed the photosynthetic pigments content. Among the substances used in the experiment, PP, α-Toc and GSH generally relieved the toxic effect of lead to the barley seedlings to the greatest degree.
Rocznik
Strony
198--208
Opis fizyczny
Bibliogr. 63 poz., rys., tab.
Twórcy
  • Department of Microbiology and Environmental Biochemistry, West Pomeranian University of Technology in Szczecin, ul. Słowackiego 17, 71-434 Szczecin, Poland
  • Department of Plant Genetics, Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, ul. Słowackiego 17, 71-434 Szczecin, Poland
autor
  • Department of Microbiology and Environmental Biochemistry, West Pomeranian University of Technology in Szczecin, ul. Słowackiego 17, 71-434 Szczecin, Poland
Bibliografia
  • 1. Abdelhamid M.T., Sadak M.S.H., Schmidhalter U.R.S., El-Saady A.K.M. 2013. Interactive effects of salinity stress and nicotinamide on physiological and biochemical parameters of Faba bean plant. Acta Biológica Colombiana, 18(3), 499–510.
  • 2. Ahmad I., Maqsood S., Basra A., Wahid A. 2014. Exogenous application of ascorbic acid, salicylic acid and hydrogen peroxide improves the productivity of hybrid maize under at low temperature stress. International Journal of Agriculture & Biology, 16, 825–830.
  • 3. Al-Hakimi A.B.M., Hamada A.M. 2011. Ascorbic acid, thiamine or salicylic acid induced changes in some physiological parameters in wheat grown under copper stress. Plant Protection Science, 47, 92–108.
  • 4. Arnon D.J., Allen M.B., Halley F. 1956. Photosynthesis by isolated chloroplasts. Biochimica et Biophysica Acta, 20, 449–461.
  • 5. Asada K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141, 391–396.
  • 6. Barbero P., Beltrami M., Baudo R., Rossi D. 2001. Assessment of Lake Orta sediments phytotoxicity after limiting treatment. Journal of Limnology, 60(2), 269–276.
  • 7. Basra S.M.A., Farooq M., Rehman H., Saleem B.A. 2007. Improving the germination and early seedling growth in melon (Cucumis melo L.) by pre-sowing salicylate treatments. International Journal of Agriculture and Biology, 9(4), 550–554.
  • 8. Bates L.S. 1973. Rapid determination of free proline for water-stress studies Plant and Soil, 39, 205–207.
  • 9. Berglund T., Ohlsson A.B. 1995. Defensive and secondary metabolism in plant tissue cultures, with special reference to nicotinamide, glutathione and oxidative stress. Plant Cell, Tissue and Organ Culture, 43, 137–145.
  • 10. Cao F., Wang N., Zhang M., Dai H., Dawood M., Zhang G., Wu F. 2013. Comparative study of alleviating effects of GSH, Se and Zn under combined contamination of cadmium and chromium in rice (Oryza sativa). BioMetals 26(2), 297–308.
  • 11. Chance B., Maehly A.C. 1955. Assay of catalase and peroxidases. Methods in enzymology. Vol 2 Eds CP Calonic, NO Kaplan New.
  • 12. Chen J., Zhu C., Li L., Sun Z., Pan X. 2007. Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress. Journal of Environmental Sciences, 19, 44–49.
  • 13. Cobbett C., Goldsbrough P. 2002. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53, 159–182.
  • 14. Cui Y., Zhao N. 2011. Oxidative stress and change in plant metabolism of maize (Zea mays L.) growing in contaminated soil with elemental sulfur and toxic effect of zinc. Plant Soil and Environment, 57(1), 34–39.
  • 15. Dawood M.G., Abdel-Baky Y.R., El-Awadi M.E.S.,Bakhoum G.S. 2019. Enhancement quality and quantity of faba bean plants grown under sandy soil conditions by nicotinamide and/or humic acid application. Bulletin of the National Research Centre, 43, 28.
  • 16. de Leeuw J., Mair P. 2009. Multidimensional scaling using majorization: SMACOF in R. Journal of Statistical Software, 31(3), 1–30.
  • 17. Dey S.K., Dey J., Patra S., Pothal D. 2007. Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Brazilian Journal of Plant Physiology, 19(1), 53–60.
  • 18. Ebrahim M.K. 2005. Amelioration of sucrose-metabolism and yield changes, in storage roots of NaCl-stressed sugarbeet, by ascorbic acid. Agrochimica, 49(3–4), 93–103.
  • 19. Fischbeck G. 2003. Diversification through breeding. Diversity in barley (Hordeum vulgare). Edit. von Bothmer R, van Hintum T, Knüpffer H, Sato K., Elsevier Science, Amsterdam.
  • 20. Foyer C.H., Noctor G. 2005. Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell Environment, 28, 1056–1071.
  • 21. Hager A., Mayer-Berthenrath T. 1966. Die Isolierung und quantitative Bestimung der Carotenoide und Chlorophyll von Blatern, Algen und isolierten Chloroplasten mit Hilfe Dunnschicht-chromatographischer Methoden. Planta, 69, 198–217.
  • 22. Hathout T.A. 1995. Diverse effects of uniconazole and nicotinamide on germination, growth, endogenous hormones and some enzymic activities of peas. Egyptian Journal of Physiological Sciences, 19, 77–95.
  • 23. Ishikawa T., Dowdle J., Smirnoff N. 2006. Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiologia Plantarum, 126, 343–355.
  • 24. Jazi B.S., Yazdi L.X., Ranjbar M. 2011. Effect of salicylic acid on some plant growth parameters under lead stress in Brassica napus var. Okapi. Iranian Journal of Plant Physiology, 1(3), 177–185.
  • 25. Jazi S.B., Oregani K.E. 2014. Impact of salicylic acid on the growth and photosynthetic pigment of canola (Brassica napus L.) under lead stress. International Journal of Biosciences, 4(10), 290–297.
  • 26. Khan M.I.R., Iqbal N., Masood A., Khan N.A. 2012. Variation in salt tolerance of wheat cultivars: role of glycinebetaine and ethylene. Pedosphere, 22, 746–754.
  • 27. Khan M., Fatma M., Per T., Anjum N., Khan N. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6(462), 1–16.
  • 28. Khattab H. 2007. Role of glutathione and polyadenylic acid on the oxidative defense systems of two different cultivars of Canola seedlings grown under saline condition. Australian Journal of Basic and Applied Sciences, 1(3), 323–334.
  • 29. Klocek J., Mioduszewska H. 2001. Wpływ kwasu salicylowego i salicylohydroksamowego na wzrost i rozwój ziemniaka w kulturach in vitro. Biotechnologia, 2(53), 148–151. [in Polish]
  • 30. Krieger-Liszkay A., Trebst A. 2006. Tocopherol is the scavenger of singlet oxygen produced by the triplet states of chlorophyll in the PSII reaction centre. Journal of Experimental Botany, 57(8), 1677–1684.
  • 31. Krupa-Małkiewicz M., Kruczek A., Pelc J., Smolik B., Ochmian I. 2018. Alleviating effects of ascorbic acid on lead toxicity in goji (Lycium barbarum L.) in vitro. Folia Pomer. Univer Stetin., Agric., Aliment., Pisc., Zootech., 340(45)1, 55–64.
  • 32. Kumar S., Singh R., Nayyar H. 2012. α-Tocopherol application modulates the response of wheat (Triticum aestivum L.) seedlings to elevated temperatures by mitigation of stress injury and enhancement of antioxidants. Journal of Plant Growth Regulation, 32(2), 307–314.
  • 33. Lichtenthaler H., Wellburn A. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591–592.
  • 34. Lokhande V.H., Nikam T.D., Patade V.Y., Ahire M.L., Suprasanna P. 2011. Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell, Tissue and Organ Culture, 104, 41–49.
  • 35. Lück H. 1963. Catalase, in: Methods of enzymatic analysis. Eds HU Bergmeyer Verlag Chemie, New York.
  • 36. Maeda H., DellaPenna D. 2007. Tocopherol functions in photosynthetic organisms. Current Opinion in Plant Biology, 10, 260–265.
  • 37. Malik A.A., Li W., Lou L.N., Weng J.F. 2010. Biochemical/physiological characterization and evaluation of in vitro salt tolerance in cucumber. African Journal of Biotechnology, 9(22), 3284–3292.
  • 38. Manschadi A.M., Hammer G.L., Christopher J.T., deVoil P. 2008. Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant and Soil, 303(1–2), 115–129.
  • 39. Metwally A., Finkemeier I., Georgi M., Dietz K.J. 2003. Salicylic acid alleviates the cadmium toxicity in Barley seedlings. Plant Physiology, 132, 272–281.
  • 40. Mishra M., Mishra P.K., Kumar U., Prakash V. 2009. NaCl Phytotoxicity Induces Oxidative Stress and Response of Antioxidant Systems in Cicer arietinum L. cv. Abrodhi. Botany Research International, 2(2), 74–82.
  • 41. Miura K., Tada Y. 2014. Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 23(5), 4.
  • 42. Moghadam H.R.T. 2016. Application of super absorbent polymer and ascorbic acid to mitigate deleterious effects of cadmium in wheat. Pesquisa Agropecuária Tropical, 46(1), 9–18.
  • 43. Mohamed, M.H., Badr, E.A., Sadak, M.S., Khedr H.H. 2020. Effect of garlic extract, ascorbic acid and nicotinamide on growth, some biochemical aspects, yield and its components of three faba bean (Vicia faba L.) cultivars under sandy soil conditions. Bulletin of the National Research Centre, 44, 1–8.
  • 44. Naser Alavi S.M., Arvin M.J., Kalantari K.M. 2014. Salicylic acid and nitric oxide alleviate osmotic stress in wheat (Triticum aestivum L.) seedlings. Journal of Plant Interactions, 9, 683–688.
  • 45. Noctor G., Mhamdi A., Chaouche S., Han Y., Neukermans J., Marquez-Garcia B. 2012. Glutathione in plants: an integrated overview. Plant, Cell & Environment, 35(2), 454–484.
  • 46. Öztürk L., Demir Y. 2002. In Vivo and in Vitro Protective Role of Proline. Plant Growth Regulation, 38(3), 259–264.
  • 47. Passardi F., Cosio C., Penel C., Dunand C. 2005. Peroxidases have more functions than a Swiss army knife. Plant Cell Reports, 24(5), 255–265.
  • 48. Pavlíková D., Pavlík M., Staszková L., Motyka V., Száková J., Tlustoš P., Balík J. 2008. Glutamate kinase as a potential biomarker of heavy metal stress in plants. Ecotoxicology and Environmental Safety, 70, 223–230.
  • 49. R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2017).
  • 50. Rucińska-Sobkowiak R. 2010. Stres oksydacyjny wywołany działaniem metali ciężkich na rośliny. Postępy Biochemii, 56(2), 191–200. [in Polish]
  • 51. Sadak M.S., Rady M.M., Badr N.M., Gaballah M.S. 2010. Increasing sunflower salt tolerance using nicotinamide and α-tocopherol. International Journal of Academic Research, 2(4), 263–270.
  • 52. Sadak M.S., Dawood M.G. 2014. Role of ascorbic acid and α tocopherol in alleviating salinity stress on flax plant (Linum usitatissimum L.). Journal of Stress Physiology & Biochemistry, 10(1), 93–111.
  • 53. Sędzik M., Smolik B., Krupa-Małkiewicz M. 2015. Effect of lead on germination and some morphological and physiological parameters of 10-day-old seedlings of various plant species. Environmental Protection and Natural Resources, 26, 3(65), 22–27.
  • 54. Shahid M., Pourrut B., Dumat C., Nadeem M., Aslam M., Pinelli E. 2014. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Reviews of Environmental Contamination and Toxicology, 232, 1–44.
  • 55. Sharma P., Dubey R.S. 2005. Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17, 35–52.
  • 56. Sharma S.S., Dietz K.J. 2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57, 711–726.
  • 57. Smolik M., Ochmian I., Bobrowska-Chwat A., Chwat G., Arus L., Banaszczak P., Bocianowski J., Milczarski P., Ostrowska K. 2022. Fingerprinting, structure, and genetic relationships among selected accessions of blue honeysuckle (Lonicera caerulea L.) from European collections. Biotechnol. Rep., 34, e00721.
  • 58. Son J.A., Narayanankutty D.P., Roh K.S. 2014. Influence of exogenous application of glutathione on rubisco and rubisco activase in heavy metal-stressed tobacco plant grown in vitro. Saudi Journal of Biological Sciences, 21(1), 89–97.
  • 59. Sudhakar C., Lakshim A., Giridarakumar S. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 161, 613–619.
  • 60. Venkatesh J., Park S. 2014. Role of L-ascorbate in alleviating abiotic stresses in crop plants. Botanical Studies, 55, 38.
  • 61. Verbruggen N., Hermans C. 2008. Proline accumulation in plants: a review. Amino Acids, 35(4), 753–759.
  • 62. Zechmann B., Mauch F., Sticher L., Müller M. 2008. Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. Journal of Experimental Botany, 59(14), 4017–4027.
  • 63. Zhu B., Xiong A., Peng R., Xu J., Zhou J., Xu J., Jin X., Zhang Y., Houl X., Yao X. 2008. Heat stress protection in Aspen sp1 transgenic Arabidopsis Thaliana. Biochemistry and Molecular Biology Reports, 41(5), 382–387.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f248dbc-0ddc-4505-9872-db3685e0b792
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.