PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrographic variation in a tropical coral reef system: The Veracruz Reef System, Gulf of Mexico

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three thousand forty-one profiles of temperature, salinity, density, dissolved oxygen, nitrogen and chlorophyll-a were used to study their seasonal variation on a tropical coral reef system, located in the central part, of the reef corridor of the southwestern Gulf of Mexico. The results revealed three seasons according to their hydrographic variations; the northerly wind season from September to April; the dry season from May to June; and the rainy season from July to August. The results of the density ratio during the dry season were ∼1.25 on average, while during the rainy season it had an average value of ∼0.62. Thus, the pycnocline was more influenced by the halocline during the rainy season and by the thermocline during the dry season. There was also an evident variation in chlorophyll-a concentration over the water column, which was not evident in the surface layer. During the summer (rainy season), dissolved oxygen was related to chlorophyll-a concentration; while, during the winter (northern wind season), these values were related to the vertical mixing of the water column due to wind stress. There was evidence of cooler ocean water intrusion into the Veracruz Reef System during the spring-summer season below ∼10 m. Finally, a second halocline, pycnocline, and nitrocline were found near ∼30 m depth during the rainy season.
Czasopismo
Rocznik
Strony
473--488
Opis fizyczny
Bibliogr., 50 poz., map., rys., wykr.
Twórcy
  • Institute of Marine Sciences and Fisheries, Universidad Veracruzana, Boca del Rio, Mexico
  • Postgraduate in Earth Sciences, National Autonomous University of Mexico (UNAM), Ciudad Universitaria, Mexico City, Mexico
  • Hydrometeorology Subcoordination, Mexican Institute of Water Technology, Jiutepec, Mexico
  • Institute of Marine Sciences and Limnology, National Autonomous University of Mexico (UNAM), Ciudad Universitaria, Mexico City, Mexico
  • Science Department, Noordwijk International College, Veracruz, Mexico
Bibliografia
  • 1. Aldeco, J., Monreal-Gómez, M.A., Signoret, M., Salas-de-León, D.A., Hernández-Becerril, D.U., 2009. Occurrence of a subsurface anticyclonic eddy, fronts, and Trichodesmium spp. Cien. Mar. 35 (4), 333-344. https://doi.org/10.7773/cm.v35i4.1551
  • 2. Allende-Arandía, M.E., Zavala-Hidalgo, J., Romero-Centeno, R., Mateos-Jasso, A., Vargas-Hernández, J.M., Zamudio, L., 2016. Analysis of ocean current observations in the northern Veracruz Coral Reef System. Mexico. J. Coast. Res. 32 (1), 46-55. https://doi.org/10.2112/JCOASTRES-D-4-00148.1
  • 3. Atchison, A.D., Sammarco, P.W., Brazeau, D.A., 2008. Genetic connectivity in corals on the Flower Garden Banks and surrounding oil/gas platforms, Gulf of Mexico. J. Exp. Mar. Biol. Ecol. 365 (1), 1-12. https://doi.org/10.1016/j.jembe.2008.07.002
  • 4. Avendaño-Alvarez, O., Salas-Monreal, D., Marin-Hernandez, M., Salas-de-Leon, D.A., Monreal-Gomez, M.A., 2017. Annual hydrological variation and hypoxic zone in a tropical coral reef system. Reg. Stud. Mar. Sci. 9, 145-155. https://doi.org/10.1016/j.rsma.2016.12.007
  • 5. Avendaño, O., Salas-Monreal, D., Anis, A., Salas-de-Leon, D.A., Monreal-Gomez, M.A., 2019. Monthly surface hydrographical variability in a coral reef system under the influence of river discharges. Estuar. Coast. Shelf Sci. 222, 53-65. https://doi.org/10.1016/j.ecss.2019.04.012
  • 6. Bennett, A.S., 1976. Conversion of in situ measurements of conductivity to salinity. Deep Sea Research and Oceanographic Abstracts 23 (2), 157-165. https://doi.org/10.1016/S0011-7471(76)80024-1
  • 7. Bidokhti, A.A., Ezam, M., 2009. The structure of the Persian Gulf outflow is subjected to density variations. Ocean Sci. 5 (1), 1-12. https://doi.org/10.5194/os-5-1-2009
  • 8. Carricart-Ganivet, J.P., Merino, M., 2001. Growth responses of the reef-building coral Montastraea annularis along a gradient of continental influence in the southern Gulf of Mexico. Bull. Mar. Sci. 68 (1), 133-146. https://doi.org/10.1007/s00338-010-0604-7
  • 9. Carricart-Ganivet, J.P., Beltrán-Torres, A.U., Horta-Puga, G., 2011. Distribution and prevalence of coral diseases in the Veracruz Reef System, Southern Gulf of Mexico. Dis. Aquat. Organ. 95 (3), 181-187. https://doi.org/10.3354/dao02359
  • 10. Chacon-Gomez, I.C., Salas-Monreal, D., Riveron-Enzastiga, M.L., 2013. Current pattern and coral larval dispersion in a tropical coral reef system. Cont. Shelf Res. 68, 23-32. https://doi.org/10.1016/j.csr.2013.08.014
  • 11. Diaz-Pulido, G., Garzón-Ferreira, J., 2002. Seasonality in algal as-semblages on upwelling-influenced coral reefs in the Colombian Caribbean. Bot. Mar. 45 (3), 284-292. https://doi.org/10.1515/BOT.2002.028
  • 12. D’Croz, L., Maté, J.L., 2004. Experimental responses to elevated water temperature in genotypes of the reef coral Pocillopora damicornis from upwelling and non-upwelling environments in Panama. Coral Reefs 23 (4), 473-483. https://doi.org/10.1007/s00338-004-0397-7
  • 13. Deslarzes, K.J.P., 1998. The Flower Garden Banks (Northwest Gulf of Mexico): Environmental Characteristics and Human Interaction. OCS Report MMS 98-0010. US Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA (US), 100 pp.
  • 14. Falkowski, P.G., Greene, R., Kolber, Z., 1993. Light utilization and photoinhibition of photosynthesis in marine phytoplankton (No. BNL-49821; CONF-9309312-1). Brookhaven National Lab, Upton, NY (United States).
  • 15. Furuya, K., 1990. Subsurface chlorophyll maximum in the tropical and subtropical western Pacific Ocean: vertical profiles of phytoplankton biomass and its relationship with chlorophyll-a and particulate organic carbon. Mar. Biol. 107 (3), 529-539. https://doi.org/10.1007/BF01313438
  • 16. Glynn, P.W., Morales, G.E.L., 1997. Coral reefs of Huatulco, West Mexico: reef development in upwelling Gulf of Tehuantepec. Rev. Biol. Trop. 45 (3), 1033-1047. https://revistas.ucr.ac.cr/index.php/rbt/article/view/21114.
  • 17. Guerrero, L., Sheinbaum, J., Mariño-Tapia, I., González-Rejón, J.J., Pérez-Brunius, P., 2020. Influence of mesoscale eddies on cross-shelf Exchange in the western Gulf of Mexico. Cont. Shelf Res. 209. https://doi.org/10.1016/j.csr.2020.104243
  • 18. Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N., 2018. ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on 01-12-2021). https://doi.org/10.24381/cds.adbb2d47
  • 19. Hughes, T.P., Kerry, J.T., Simpson, T., 2018. Large-scale bleaching of corals on the Great Barrier Reef. Ecology 99 (2), 501. https://doi.org/10.1007/s003380050154
  • 20. Isdale, J.D., Spence, C.M., Tudhope, J.S., 1972. Physical properties of sea water solutions: viscosity. Desalination 10 (4), 319-328.
  • 21. Jordan-Dahlgren, E., 2002. Gorgonian distribution patterns in coral reef environments of the Gulf of Mexico: evidence of sporadic ecological connectivity? Coral Reefs 21 (2), 205-215. https://doi.org/10.1007/s00338-002-0226-9
  • 22. Kineke, G.C., Higgins, E.E., Hart, K., Velasco, D., 2006. Fine-sediment transport associated with cold-front passages on the shallow shelf. Gulf of Mexico. Cont. Shelf Res. 26 (17—18), 2073-2091. https://doi.org/10.1016/j.csr.2006.07.023
  • 23. Kleypas, J.A., McManus, J.W., Meñez, L.A.B., 1999. Environmental limits to coral reef development: where do we draw the line? Am. Zool. 39 (1), 146-159. https://doi.org/10.1093/icb/39.1.146
  • 24. Liaño-Carrera, F., Camarena-Luhrs, T., Gómez-Barrero, A., Martos-Fernández, F.J., Ramírez-Macias, J.I., Salas-Monreal, D., 2019. New coral reef structures in a tropical coral reef system. Lat. Am. J. Aquat. Res. 47 (2), 270-281. https://doi.org/10.3856/vol47-issue2-fulltext-7
  • 25. Lugo-Fernandez, A., Deslarzes, K.J.P., Price, J.M., Boland, G.S., Morin, M.V., 2001. Inferring probable dispersal of Flower Garden Banks coral larvae (Gulf of Mexico) using observed and simulated drifter trajectories. Cont. Shelf Res. 21 (1), 47-67. https://doi.org/10.1016/S0278-4343(00)00072-8
  • 26. Mateos-Jasso, A., Zavala-Hidalgo, J., Romero-Centeno, R., Allende-Arandía, M.E., 2012. Variability of the thermohaline structure in the northern Veracruz Coral Reef System. Mexico. Cont. Shelf Res. 50, 30-40. https://doi.org/10.1016/j.csr.2012.10.001
  • 27. Mayfield, A.B., Fan, T.Y., Chen, C.S., 2013. Physiological acclimation to elevated temperature in a reef-building coral from an upwelling environment. Coral Reefs 32 (4), 909-921. https://doi.org/10.1016/j.csr.2012.10.001
  • 28. Moore, D.R., Bullis Jr, H.R., 1960. A deep-water coral reef in the Gulf of Mexico. Bull. Mar. Sci. 10 (1), 125-128.
  • 29. Okolodkov, Y.B., Aké-Castillo, J.A., Gutiérrez-Quevedo, M.G., Pérez-España, H., Salas-Monreal, D., 2011. Annual cycle of the plankton biomass in the National Park Sistema Arrecifal Veracruzano, southwestern Gulf of Mexico. In: Katell, G. (Ed.), Zooplankton and phytoplankton: Types, Characteristics and Ecology. Nova Science Publishers, 63-88.
  • 30. Ortiz-Lozano, L., Pérez-España, H., Granados-Barba, A., González-Gándara, C., Gutiérrez-Velázquez, A., Martos, J., 2013. The Reef Corridor of the Southwest Gulf of Mexico: Challenges for its management and conservation. Ocean Coast. Manag. 86, 22-32. https://doi.org/10.1016/j.ocecoaman.2013.10.006
  • 31. Perry, C.T., Macdonald, I.A., 2002. Impacts of light penetration on the bathymetry of reef microboring communities: implications for the development of microendolithic trace assemblages. Palaeogeogr. Palaeoclimatol. Palaeoecol. 186 (1—2), 101-113. https://doi.org/10.1016/S0031-182(02)00446-7
  • 32. Rezak, R., Bright, T.J., McGrail, D.W., 1985. Reefs and Banks of the Northwestern Gulf of Mexico: their Geological, Biological, and Physical Dynamics. John Wiley & Son, New York, 259 pp.
  • 33. Riveron-Enzastiga, M.L., Carbajal, N., Salas-Monreal, D., 2016. Tropical coral reef system hydrodynamics in the western Gulf of Mexico. Sci. Mar. 80 (2), 237-246.
  • 34. Salas-Monreal, D., Marin-Hernandez, M., Salas-Perez, J.J., Salas de-Leon, D.A., Monreal-Gomez, M.A., Perez-España, H., 2018. Coral reef connectivity within the Western Gulf of Mexico. J. Mar. Syst. 179, 88-99. https://doi.org/10.1016/j.jmarsys.2017.12.001
  • 35. Salas-Monreal, D., Riveron-Enzastiga, M.L., Salas-Perez, J.J., Bernal-Ramirez, R., Marin-Hernandez, M., Granados-Barba, A., 2020. Bathymetric flow rectification in a tropical micro-tidal estuary. Estuar. Coast. Shelf Sci. 235, 106562. https://doi.org/10.1016/j.ecss.2019.106562
  • 36. Salas-Monreal, D., Salas-de-León, D.A., Monreal-Gómez, M.A., Riverón-Enzástiga, M.L., 2009. Current rectification in a tropical coral reef system. Coral Reefs 28 (4), 871-879. https://doi.org/10.1007/s00338-009-0521-9
  • 37. Salas-Monreal, D., Valle-Levinson, A., Athie, G., 2019. Flow modifications over a tropical coral reef system. Estuar. Coast. Shelf Sci. 217, 271-280. https://doi.org/10.1016/j.ecss.2018.11.029
  • 38. Salas-Perez, J.J., Arenas-Fuentes, V., 2011. Winter water mass of the Veracruz Reef System. Atmósfera 24 (2), 221-231. Salas-Perez, J.J., Granados-Barba, A., 2008. Oceanographic characterization of the Veracruz reef system. Atmósfera 21, 281-301. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-62362008000300005&nrm=iso
  • 39. Salas-Perez, J.J., Jordan-Garza, A.G., Salas-Monreal, D., 2020. Climate variability over the reef corridor of the southwestern Gulf of Mexico. Atmósfera 33 (2), 143-157. https://doi.org/10.20937/atm.52730
  • 40. Salas-Perez, J.J., Salas-Monreal, D., Monreal-Gómez, M.A., Riveron-Enzastiga, M.L., Llasat, C., 2012. Seasonal absolute acoustic intensity, atmospheric forcing and currents in a tropical coral reef system. Estuar. Coast. Shelf Sci. 100, 102-112. https://doi.org/10.1016/j.ecss.2012.01.002
  • 41. Sammarco, P.W., Brazeau, D.A., Sinclair, J., 2012. Genetic connectivity in scleractinian corals across the Northern Gulf of Mexico: oil/gas platforms, and relationship to the Flower Garden Banks. PLoS One 7 (4). https://doi.org/10.1371/journal.pone.0030144
  • 42. Sanvicente-Añorve, L., Zavala-Hidalgo, J., Allende-Arandía, M.E., Hermoso-Salazar, M., 2014. Connectivity patterns among coral reef systems in the southern Gulf of Mexico. Mar. Ecol. Prog. Ser. 498, 27-41. https://doi.org/10.3354/meps10631
  • 43. Schill, S.R., Raber, G.T., Roberts, J.J., Treml, E.A., Brenner, J., Halpin, P.N., 2015. No reef is an island: integrating coral reef connectivity data into the design of regional-scale marine protected area networks. PLoS One 10 (12). https://doi.org/10.1371/journal.pone.00144199
  • 44. Sharqawy, M.H., Lienhard, J.H., Zubair, S.M., 2010. Thermophysical properties of seawater: a review of existing correlations and data. Desalination Water Treat 16 (1—3), 354-380. https://doi.org/10.5004/dwt.2010.1079
  • 45. Tunnell, J.W., Chavez, E.A., Withers, K., 2007. Coral reefs of the southern Gulf of Mexico. Texas A&M University Press, Corpus Christi, Texas, 194 pp.
  • 46. Vera-Mendoza, R.R., Salas-de-León, D.A., Salas-Monreal, D., Ortiz-Figueroa, M., 2017. Wind forcing of sea level variability in a tropical coral reef area in the western Gulf of Mexico. Lat. Am. J. Aquat. Res. 45 (4), 797-806. https://doi.org/10.3856/vol45-issue4-fulltext-15
  • 47. Vidal, M.V.V., Vidal, F.V., Pérez-Molero, J.M., 1992. Collision of a loop current anticyclonic ring against the continental shelf slope of the western Gulf of Mexico. J. Geophys. Res. 97 (02), 2155-2172.
  • 48. Villegas-Sánchez, C.A., Pérez-España, H., Rivera-Madrid, R., Salas-Monreal, D., Arias-González, J.E., 2013. Subtle genetic connectivity between Mexican Caribbean and south-western Gulf of Mexico reefs: the case of the bicolor damselfish, Stegastes partitus. Coral Reefs 33 (1), 241-251. https://doi.org/10.1007/s00338-013-1083-4
  • 49. Walker, N.D., Rouse Jr, L.J., 1993. Satellite assessment of Mississippi River discharge plume variability. OCS Study MMS 93 -0044, US Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, L.A, 50 pp.
  • 50. Wolanski, E., Delesalle, B., 1995. Upwelling by internal waves, Tahiti, French Polynesia. Cont. Shelf Res. 15 (2—3), 357-368 https://doi.org/10.1016/0278-4343(93)E0004-R
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f22d430-71e7-4fd2-b013-4433a384199d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.