PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and investigation of Schottky barrier MOSFET current injection with process and device simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we focus on the implementation of a process flow of SB-MOSFETs into the process simulator of the Synopsys TCAD Sentaurus tool-chain. An improved structure containing topography is briefly discussed and further device simulations are applied with the latest physical models available. Key parameters are discussed and finally the results are compared with fabricated SB-MOSFETs in terms of accuracy and capability of process simulations.
Twórcy
autor
  • NanoP, Technische Hochschule Mittelhessen, Germany
  • Université Paris-Sud, France
  • JCap, LLC, USA
  • TU Darmstadt, Germany
autor
  • TU Darmstadt, Germany
  • NanoP, Technische Hochschule Mittelhessen, Germany
Bibliografia
  • [1] J. Bruner, ”Intel 22nm 3-D Tri-Gate Transistor Technology”, News release and press materials (Intel), http://www.intel.com, 2011.
  • [2] Q. Liu, et al., ”High performance UTBB FDSOI devices featuring 20nm gate length for 14nm node and beyond”, IEDM, Washington DC, USA, 2013.
  • [3] TSMC, ”TSMC Website: Dedicated Foundry - Technology”, http://www.tsmc.com/english/dedicatedFoundry/technology, 2018.
  • [4] Global Foundries, ”Global Foundries Website: Technology Solutions”, https://www.globalfoundries.com/technology-solutions, 2018.
  • [5] J. M. Larson, J. P. Snyder, ”Overview and status of metal S/D Schottkybarrier MOSFET technology”, IEEE Transaction Electron Devices 53 (5), 1048–1058, 2006.
  • [6] W. E. Purches, A. Rossi, R. Zhao, S. Kafanov, T. L. Duty, A. S. Dzurak, S. Rogge, and G. C. Tettamanzi, ”A planar Al-Si Schottky barrier metal-oxide-semiconductor field effect transistor operated at cryogenic temperatures, Applied Physics Letters 107, 2015.
  • [7] J. P. Snyder, ”Benefits of Schottky Barrier MOS vs. Conventional Doped S/D MOS”, Meeting on Schottky Barrier devices, Ueberherrn, Germany, 2016.
  • [8] S. M. Sze, KWOG K. NG, ”Physics of Semiconductor Devices”, John Wiley & Sons, 2007.
  • [9] J. L. Padilla, L. Knoll, F. G´amiz, Q. T. Zhao, A. Godoy, and S. Mantl, ”Simulation of Fabricated 20-nm Schottky Barrier MOSFETs on SOI: Impact of Barrier Lowering”, IEEE Transaction Electron Devices 59 (5), 1320–1327, 2012.
  • [10] M. Schwarz, L. E. Calvet, J. P. Snyder, T. Krauss, U. Schwalke, and A. Kloes, ”On the Physical Behavior of Cryogenic IV and III-V Schottky Barrier MOSFET Devices”, IEEE Transaction Electron Devices 64 (9), 3808–3815, 2017.
  • [11] M. Fritze, C. L. Chen, S. Calawa, D. Yost, B. Wheeler, P. Wyatt, C. L. Keast, J. Snyder, and J. Larson, ”High-speed Schottky-barrier pMOSFET with fT = 280GHz”, IEEE Electron Device Letters 25 (4), 220–222, 2004.
  • [12] ”TCAD Sentaurus”, Synopsys, Inc., c-2016.12 Edition, 2016.
  • [13] M. Kumar, S. Haldar, M. Gupta, R.S. Gupta, ”Physics based analytical model for surface potential and subthreshold current of cylindrical Schottky Barrier gate all around MOSFET with high-k gate stack”, Superlattices and Microstructures 90, 215–226, 2016.
  • [14] M. Schwarz, A. Kloes, ”Analysis and Performance Study of III-V Schottky Barrier Double-Gate MOSFETs Using a 2-D Analytical Model”, IEEE Transactions on Electron Devices 63 (7), 2757–2763, 2016.
  • [15] A.F. Tasch, H. Shin, C.Park, J. Alvis, and S. Novak, ”An Improved Approach to Accurately Model B and BF2 Implants in Silicon”, J. Electrochem. Soc., 136, p.810, 1989.
  • [16] M. Schwarz, L. E. Calvet, J. P. Snyder, T. Krauss, U. Schwalke, and A. Kloes, ”Process and Device Simulation of Schottky Barrier MOSFETs for Analysis of Current Injection”, in Proc. MIXDES, Gydnia, Poland, 2018.
  • [17] K.M. Klein, C. Park, A.F. Tasch, R.B. Simonton, and S. Novak, ”Analysis of Implanted Boron Distribution Dependence on Tilt and Rotation Angle”, J. Electrochem. Soc., 138, p.2102, 1991.
  • [18] C.Park, K.M. Klein, A.F. Tasch, R.B. Simonton, S. Novak, and G. Lux, ”A Comprehansive and Computationally Efficient Modeling Strategy for Simulation of Boron Ion Implantation into Single-Crystal Silicon with Explicit Dose and Implant Angle Dependence”, COMPEL, 10, p.331, 1991).
  • [19] G. Zhu, X. Zhou, T.S. Lee, L.K. Ang, G.H. See, S. Lin, Y.-K. Chin, and K.L. Pey, ”A Compact Model for Undoped Silicon-Nanowire MOSFETs With Schottky-Barrier Source/Drain”, IEEE Transactions on Electron Devices 56 (5), 1100–1109, 2009.
  • [20] S. Kale, and P.N. Kondekar, ”Suppression of ambipolar leakage current in Schottky barrier MOSFET using gate engineering”, Electronics Letters 51 (19), 1536–1538, 2015.
  • [21] L. E. Calvet, ”Electrical Transport in Schottky Barrier MOSFETs”, PhD Thesis, Yale University, USA, 2001.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f1f7ba0-df2c-47e9-8683-923f028a875d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.