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Abstract—In this paper we focus on the implementation of a
process flow of SB-MOSFETs into the process simulator of the
Synopsys TCAD Sentaurus tool-chain. An improved structure
containing topography is briefly discussed and further device
simulations are applied with the latest physical models available.
Key parameters are discussed and finally the results are com-
pared with fabricated SB-MOSFETs in terms of accuracy and
capability of process simulations.
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I. INTRODUCTION

NOWADAYS, the semiconductor industry is dominated by

device structures such as Intel’s tri-gate [1], and fully-

depleted SOI devices [2]. These multi-gate devices enhance

electrostatics and address short-channel effects (SCEs) and

device performance degradation. Today gate lengths in FinFET

technology below 10nm are state-of-the-art [3], [4].

However, there remain some important issues that still

need to be considered. One of these technological limits that

continues to present an important obstacle is the increased

impact of source/drain (S/D) parasitic resistances [5]. One

solution is to consider changes in device technology and in

particular the device structure.

In this context the Schottky barrier (SB) MOSFET is a very

promising candidate to enhance the transistor performance due

to its metallic S/D electrodes with low specific resistances

and high scalability even down to the sub-10nm region. Its

good process compatibility with standard CMOS technologies

makes this concept still very attractive.

Schottky barrier MOSFETs offer additional advantages such

as substrate leakage improvements and low temperature en-

hancements due to the presence of the Schottky barrier. These

lead to a reduced channel doping, typically used to control

the off-state leakage currents and thus improved mobility, as

well as reduced junction and gate capacitances. This results in

substantial power and speed performance improvements [6],

[7].

Besides, more effects like the important Schottky barrier

effect of the image force induced lowering of the barrier, also

known as the Schottky barrier lowering (SBL) effect [8] have

to be taken into account [9], [10].
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As the reader now can observe, various effects impact the

device performance of Schottky barrier devices. All these

effects have to be considered in a numerical analysis of

Schottky barrier MOSFETs by implementing the process flow

and using appropriate physical models in a TCAD tool in order

to allow eventually for an accurate analysis of the device’s

performance.

The demand and challenges of such technologies encourage

researchers and device designers to optimize devices with the

help of process and/or device simulations. As shown by the

various publications [5], [11], steps such as channel implants

to suppress leakage current in bulk devices are required to en-

hance device performance behavior. However, these proposals

are a guess from experiences. Process simulation can optimize

these questions in a way, to define the optimal implant in

terms of dose, energy, tilt, etc. Furthermore, diffusion and

thermal budget process steps are taken into account during

the optimization process and for the optimal process design.

Especially, for and in industry one should remember that

before a device is built into silicon, more than 80% of the

work is supported by simulation and yield predictions.

In the past, various numerical studies of Schottky barrier

MOSFETs have been published based on device simulators

like Synopsys TCAD Sentaurus [12]. In general such numer-

ical studies [9], [13], [14] deal with ideal device geometries.

They for example assume optimal metal-to-semiconductor

junctions for the Schottky barriers, which finally lead to an

ideal device performance under perfect conditions. Such simu-

lations always offer the best case of those device simulations

Fig. 1. High-resolution cross-section TEM of a 22nm SB-PMOS device [5],
[11].



from the geometrical point of view. However, reality shows

that such interfaces are not ideal, they consist on interfacial

effects and topography which result during the silicidation

process and the interaction between metal/silicide and the

semiconductor caused by lattice mismatches, etc. as shown

in Figure 1 by [5], [11].

To account for such topography and interfacial impacts, in

this paper a first implementation of a bulk Schottky barrier

MOSFET into the process simulation of the Synopsys TCAD

tool-chain is presented to account for a more precise estima-

tion, as shown in Figure 2. Furthermore, different important

process steps are analyzed in terms of their impact and linked

with expectations from experienced process engineers. To

the best of our knowledge, this is done for the first time.

Furthermore, effects such as ambipolar behavior from e.g.

the drain as shown in Figure 3 are taken into account in the

analysis.

Fig. 2. Simulation of a 25nm SB-PMOS device with retrograde channel
implant due to the process flow of [5], [11].

Fig. 3. Typical band diagram of a PMOS Schottky barrier MOSFET including
ambipolar behavior for bias Vds < 0 at the drain junction.

II. PROCESS SIMULATION

In this section the aim is to implement a typical process for

Schottky barrier devices into a process simulation compatible

language. Therefore, we focus in a first step on Schottky

barrier bulk devices, however it is optional to translate the

flow also into multigate or fully-depleted SOI structures. An

alternative model process flow compared to [16] for a PtSi

Schottky barrier MOSFET with channel length of lch = 25nm
is given in Figure 4.

Fig. 4. Possible process flow for a PtSi Schottky barrier MOSFET with
channel length of lch = 25nm.

A. SB-MOS Process Flow
The Schottky barrier device differs slightly compared to a

standard CMOS process. Larson and Snyder [5] give some

detailed overview of the various process steps and differences.

In the following a brief introduction is given with the focus on

the process simulation flow. It is obvious, that some process

steps can be changed in their order.

The CMOS process starts with the bulk silicon wafer.

First, a body implant is provided by standard well implants

and channel implants. According to [5] a retrograde channel

implant with a peak dopant concentration of approximately

1018 − 1019cm−3 located at a depth of approximately 25 −
100nm below the gate insulator is required to suppress leakage

from the substrate in bulk devices. Additionally, the retrograde

channel implant should provide a dopant concentration of

1016−1017cm−3 below the gate insulator (0−10nm). Here, a

majority of the mobile charge flows from source to drain and

by the reduced channel doping an improved effective carrier

mobility is obtained.

After the channel implant a local oxidation of silicon

(LOCOS) or shallow trench isolation (STI) process follows,

while here the second one is considered. First a shallow trench

isolation (STI) etch, which is done generally by a nitride

deposit, a mask definition and an anisotropic etch of the nitride

plus a directional etch of the silicon is provided. Afterwards,

a fill of the STI is made by an oxide deposition and a final

strip of the nitride.



It follows a dual-doped polysilicon or metal-gate process.

An oxidation process step to build the gate oxide is provided.

Afterwards, polysilicon is deposited, the gate mask applied

and then the polysilicon is structured anisotropically. An

isotropic nitride deposit and an anisotropic nitride etch are then

followed by an anisotropic oxide etch. The spacers consist of

nitride. Alternatively, lithography and etch can be used to form

the gate in combination with the oxidation process. A thin

(< 10nm) sidewall spacer is formed on the gate and an

anisotropic sidewall spacer etch exposes the active regions.

The thin sidewall spacer helps minimize S/D-to-gate under-

lap so that the SB junctions to the channel region are in close

proximity to the gate electrode. The result is an optimized

capacitance due to junction proximity to the gate minimizing

the parasitic junction resistance induced by underlap, a mini-

mized overlap capacitance, and minimizing the gate-induced

drain-leakage current [5].

Different from a standard CMOS process flow the implant

and diffusion process is replaced by a silicidation process step.

Here, depending on the body implant and the target Schottky

barrier the material silicidation varies from platinum, nickel or

erbium, etc. A standard sputter-deposition tool can be used for

platinum or erbium deposition to thicknesses of approximate

10 − 50nm. A 400 − 500◦C 1h furnace anneal forms the

silicide. Unreacted platinum, nickel or erbium unreacted with

silicon is removed by a selective strip. Alternatively, a RTA

(rapid thermal anneal) process with a shorter annealing time

of 5− 10min can be used for silicidation.

B. Process Flow to Simulation
To account for the process flow as explained above, one

has to translate into the language that is supported by the

vendor of the simulation tool. Independently of the vendor,

the commands to account the different process steps are rather

simple. For example the wafer is initialized as follows:

i n i t wafe r . o r i e n t = 100 f i e l d = Boron c o n c e n t r a t i o n = 2 e15

The channel implant which is used to realize a retrograde

channel implant may look like:

i m p l a n t Boron dose = 2 e13 en e rg y = 70 t i l t = 7 r o t a t i o n = 22

There exists a various set of command which are used

to translate the process flow to process simulation. These

commands are found within the manual, e.g. Synopsys TCAD

Sentaurus Process [12]. A brief overview is given in Table I.

TABLE I
PRIMARY USED SYNOPSYS TCAD SENTAURUS PROCESS COMMANDS

TO REPRESENT THE SB-MOS PROCESS FLOW

command function
deposit deposition of a defined material

including a defined thickness
etch anisotropic or isotropic etch of defined

material including a defined thickness
mask mask definition for etch, implant, deposition, etc.

diffuse diffusion process, e.g. single step or a ramp
strip strip of a defined material

implant implantation process of species,
e.g. boron or phosphorous

contact contact definition, e.g. for a silicidation area

A silicidation process for e.g. nickel silicide is represented

partially as follows:

d e p o s i t N i c k e l t y p e = i s o t r o p i c t h i c k n e s s = 0 . 0 3
. . .
d i f f u s e t ime = 3600<s> temp= 450<C>
s t r i p N i c k e l

The difficulty begins with the calibration of the process

itself. Here, the vendors offer a set of various parameters

for each command to adjust the models to reality. This is

caused by the difference in each process. Even, if the e.g. the

implant models behind the process simulator are calibrated by

the Tasch Tables [15], [17], [18] for Dual Pearson models,

the process differ from fab to fab and tool to tool. This is

the reason why measurement techniques such as SIMS (Sec-

ondary Ion Mass Spectrometry), SPR (Spreading Resistance),

TEM (Transmission Electron Microscope), STEM (Scanning

Transmission Electron Microscope), REM (Reflection Electron

Microscope) are required to calibrate the process in terms of

diffusion and/or segregation coefficients.

C. Model Process Simulation

The model process flow of Figure 4 is applied in Synopsys

TCAD Sentaurus Process and various steps of a half model

are visualized for further discussion.

In Figure 5 one can observe the process steps of chan-

nel implantation, STI, polysilicon gate process, and nitride

sidewall spacer. The structure of shallow trench isolation

(brown), polysilicon gate (magenta) and nitride spacers (gold)

are clearly visible.

An intermediate process step is shown in Figure 6, where

the silicidation process is running. One can see the silicidation

progress of the nickel silicide (silver) in the source/drain and

gate region. On top the overall deposited nickel (beige) offer

is visible.

After the final diffusion the remaining non reacted nickel

is striped away and a final RTA follows. This process step

is shown in Figure 7, where one easily can see the resulting

silicidation areas at source/drain and gate.

Finally, the half model is extended to a full model as shown

in Figure 8. Here, it is obvious where the source and drain

regions are. Additionally, one can clearly see the resulting

topography of the silicide, spacers, etc. and may compare to

the TEM of Figure 1.

With such results for a SB process now one can apply

the device simulation with all the different physical models

for e.g. Schottky barrier lowering, non-local tunneling, etc.

as many papers [10], [19], [20], [9] offered for ideal struc-

tures and investigate different aspects of a Schottky barrier

device. Especially, the impact of sidewall spacers on device

performance caused by the under/overlap can be analyzed, or

the retrograde channel implant as suggested by [5] can be

understood in more detail and improved if necessary. Also, the

study of physical insights, e.g. where the maximum tunneling

of carriers at the metal-to semiconductor interface occurs

can be used to improve and simplify compact models and/or

equations. This can be a huge benefit of more detailed structure

implementations by process and device simulations.



Fig. 5. Half model of the process steps: channel implantation, STI,
polysilicon gate process, and nitride sidewall spacer.

Fig. 6. Half model of the process steps: nickel deposition and nickel
silicidation.

III. INVESTIGATION WITH DEVICE SIMULATION

Within this section the device created by the process sim-

ulation above is further investigated with device simulations.

Here, especially the tunneling generation rate at the silicide

interfaces for different bias conditions is in focus.

Within the TCAD simulation environment the following

models were activated: Fermi distribution, doping dependency

on mobility, high field saturation on mobility, mobility degra-

dation at interfaces, bandgap narrowing on effective intrinsic

density in terms of old Slotboom model, lattice temperature,

nonlocal tunneling at metal-semiconductor interfaces including

SBL.

In the Figures 9 to 12 a model PtSi Schottky barrier

MOSFET is shown, where the contacts of platinum silicides

are hidden for better visualization.

If one compares Figures 9 and 10, the Tunneling Generation

Rate (TGR) for holes at the source and drain interfaces are

visualized. Both plots differ in terms of bias conditions for

Vds, where the shown operational points visualize the on-state

behavior for the Schottky barrier PMOS. Here, one can see that

Fig. 7. Half model of the process steps: nickel strip and RTA.

Fig. 8. Full process model after the model process flow.

the main impact is concentrated underneath the contacts with a

proximity to the gate. This finally leads to the behavior shown

in Figure 3 if one slices from source to drain (z-direction)

underneath the gate oxide. In the on-state the impact mainly

corresponds to holes at the aligned gate to source. This is

also observed in the legend, which shows the large amount of

carriers from the TGR.

Furthermore, one can see the difference in terms of Vds. For

low Vds = 0.05V, the tunneling current density is smaller, as

expected from the band bending, which results in a smaller

tunneling probability due to the larger distance for the carriers

at a specific energy level to tunnel. The larger the Vds (Figure

3), the higher the band bending at the source for the valence

band, the higher the TGR for the holes. The amount and

distribution along the source contact in the change is observed

as well. The corresponding electron TGR (not visualized) is of

several magnitude lower and therefore does not significantly

contribute to Id.

The situation changes, if one analyze and investigate the

TGR in the off-state as shown in Figures 11 and 12. In the



Fig. 9. Tunneling generation rate for holes at the source and drain interfaces.
Bias conditions: Vds = −0.05V, Vg = −2V (on-state).

Fig. 10. Tunneling generation rate for holes at the source and drain interfaces.
Bias conditions: Vds = −1V, Vg = −2V (on-state).

off-state the ambipolar behavior dominates. The hole TGR is

decreased and negligible (not visualized) and the electron TGR

increases caused by the drain-side band bending impact. As

one can observe for the plots with Vds = 0.05V (Figure 11)

and Vds = 1V (Figure 12), the main impact occurs at the drain

contact in the proximity of the gate, where the influence of

the gate is highest. The more one moves away, the less TGR

results. This explains why ambipolar impact can be suppressed

by gate to drain spacer engineering.

However, one has to consider further influences besides

the ambipolar behavior. The leakage current influence from

the substrate plays a significant role the shorter the channel

length becomes. This is caused by lowering the influence of

the gate on the channel. This finally leads to an increased

leakage current for this modeled process flow. Nevertheless,

the Fermi distributions for a final statement have to be taken

into account.

In general, if one wants to improve the ambipolar impact

by a decrease of several orders of magnitude, it is obvious to

degrade the gate impact onto the drain contact. Finally, it can

be derived by comparing Figures 9 and 10, that the amount

is mainly concentrated for the on-state nearby the gate region,

where the Tunneling Generation Rate for holes at the source

and drain interfaces are visualized. This is clear, because the

Schottky barrier for the electrons is in the range of φBn ≈
0.8eV, while it is for the holes in the area of φBp ≈ 0.22eV
for PtSi.

IV. COMPARISON WITH MEASUREMENTS

Figure 13 illustrates the Id−Vg device simulation results for

a process flow from [21] for PtSi Schottky barrier MOSFET

devices with layout channel lengths of lch = 500nm and lch =
240nm.

Fig. 11. Tunneling generation rate for electrons at the source and drain
interfaces. Bias conditions: Vds = −0.05V, Vg = 1V (off-state).

Fig. 12. Tunneling generation rate for electrons at the source and drain
interfaces. Bias conditions: Vds = −1V, Vg = 1V (off-state).

SEM/TEM measurements revealed that the long channel

length devices with layout lch = 500nm had effective channel

lengths of lch,eff ≈ 300nm, tch,eff ≈ 20 − 30nm, tox,SiO2
≈

2.5nm and for the short channel device effective channel

lengths of lch,eff ≈ 50nm.

Within the simulation environment a channel length of

lch,simulation ≈ 180 − 200nm, tch,eff ≈ 20nm, was used

to accurately fit the slope of the thermionic emission (TE)

from the measurements. The transition point (Fig. 13) of

thermionic emission (TE) to field emission (FE) was almost

unaffected by the channel length change, because it primarily

depends on barrier height for longer channel devices. The

small channel device within the simulation was adjusted to

lch,simulation ≈ 40nm to fit the measurements.

Fig. 13. Id −Vg with φBp,PtSi ≈ 0.22eV from [21] for SB devices with
channel layout length of lch,eff = 300nm and lch,eff = 50nm.



As one can clearly see, the general behavior of the simu-

lation in terms of transition between thermionic emission and

field emission and slope fits well with the measurement data of

Calvet et al. However, especially for the long channel device

the difference between layout and simulation is significant

and does not fit to the experiments. This is caused by a too

optimistic gate influence, which finally suggests that the active

gate length is far less than the layouted one.

What one also may observe from the Id − Vg curves, the

shorter the channel length, the higher the leakage current from

the substrate. If one wants to improve the device behavior and

suppress the leakage current, a channel implant to suppress

the leakage influence from the substrate is required.

Fig. 14. Channel doping Nch with and without a retrograde channel implant
and electrostatic potential ϕ for a SB device with channel length of lch,eff =
25nm with φBp,PtSi ≈ 0.22eV from [5].

Fig. 15. Hole current density distribution for a SB-MOSFET with
φBp,PtSi ≈ 0.22eV from [5] with a channel length of lch,eff = 25nm and
a retrograde channel implant. Bias conditions: Vds = −0.1V, Vg = 0.5V
(off-state).

Fig. 16. Hole current density distribution for a SB-MOSFET with
φBp,PtSi ≈ 0.22eV from [5] with a channel length of lch,eff = 25nm.
Bias conditions: Vds = −1.2V, Vg = 0.5V (off-state).

This can be observed for a retrograde channel implant with

phosphorus and a dose of 2 ·1013/cm2 with an implant energy

of 120keV for a PtSi Schottky barrier MOSFET device with

a channel length of lch,eff = 25nm and a barrier height of

φBp,PtSi ≈ 0.22eV from [5].

Figure 14 shows the doping distribution of the simulated

device with and without channel implant for a slice gate oxide

to bulk silicon in the middle of the device. Below the corre-

sponding electrostatic potential is shown for Vds = −0.1V and

−1.2V with Vg = 0.5V for the off-state. One can clearly see,

that the channel implant influences the solution of Poisson’s

equation and therefore the electrostatics e.g. the threshold

voltage, etc. The influence of the substrate is screened by an

increased potential barrier.

In Figures 15 and 16 one can see the hole current density

distributions within a slice of the device described before

but without the retrograde channel implant. The hole current

density is of interest, because the leakage current in Figure

13 for Vg = 0.5V is caused by holes. One observe that

for both Vds = −0.1V and Vds = −1.2V an increased

current density occurs within the bulk silicon, which is orders

magnitudes higher compared to the current density underneath

the gate oxide. The space charge region (not visualized) is

located deep in the bulk, which has an increased impact from

the substrate potential for the short channel device. This is a

common behavior for bulk short channel devices, where the

impact of source and drain impedes the electrostatic control

of the gate on deeper channel regions.

In Figures 15 to 18 the corresponding results for the off-state

current densities indicating where the substrate leakage current

occurs are given for simulations with/without the retrograde

channel implant as described before.

Fig. 17. Hole current density distribution for a SB-MOSFET with
φBp,PtSi ≈ 0.22eV from [5] with a channel length of lch,eff = 25nm.
Bias conditions: Vds = −0.1V, Vg = 0.5V (off-state).

Fig. 18. Hole current density distribution for a SB-MOSFET with
φBp,PtSi ≈ 0.22eV from [5] with a channel length of lch,eff = 25nm
and a retrograde channel implant. Bias conditions: Vds = −1.2, Vg = 0.5V
(off-state).



If one now implants a retrograde channel, e.g. a channel

implant with phosphorus and a dose of 2 · 1013/cm2 with

an implant energy of 120keV, the behaviors as visualized

in Figures 17 and 18 result. The hole leakage current is

reduced several orders of magnitude for both Vds = −0.1V
and Vds = −1.2V. The channel implant, located with its

peak concentration approximately between 50nm to 100nm
screens the influence from the substrate (Fig. 14) and reduces

therefore the leakage current. The dominating current flow

results between the source and drain silicides, approximately

10nm to 20nm underneath the gate oxide. This indicates still

an increased short channel impact. However, the retrograde

channel implant improves the device off-state behavior.

This improvement is clearly observable by the comparison

of the Id−Vg curves as shown in Figure 19. If one considers

e.g. a retrograde channel implant and some minor process

changes as a final high temperature anneal, one receives an im-

proved device behavior. The improvement is clearly observed

even lower channel lengths compared to the devices of [21],

where no retrograde channel implant was considered within

the process flow to suppress the substrate leakage current.

Within the figure one can observe two major statements. First,

process simulation is able to capture the device behavior in

good agreement to measurement data. Second, physical effects

on the device performance due to process improvements as

discussed above are accurately predicted.

As one can observe, the small process change within the

simulation explains from the physics point of view the de-

vice behavior. It enables further analyses in terms of device

improvements by process and device simulations. Especially

for limited design of experiments (DOEs) where experimental

variations are rarely available due to limited resources.

Fig. 19. Id −Vg with φBp,PtSi ≈ 0.22eV from [5] for a SB device with
channel length of lch,eff = 25nm with and without a retrograde channel
implant of Nch.

V. CONCLUSION

A methodology to account for more precise and realistic

SB-MOSFET process simulations was presented. We demon-

strated the capability of such simulations to match experimen-

tal data.

Furthermore, the physical impact of retrograde channel

implants on the device off-state behavior of the substrate

leakage current was explored. These results show how an

improvement in the current estimations in the on/off regions

can be obtained.

The quality of the process and the selection of the correct

calibration can have an important influence on Schottky barrier

device simulations. Important parameters such as the mass and

channel length are critical for final device performance and

significantly enhances the possibilities for accurate modeling

of these devices.
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