PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-isothermal melt- and cold-crystallization, melting process, and optical and mechanical properties of PLLA: the effect of TAPH

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We synthesized a new phenylacetic hydrazide derivative (TAPH) by acylation and amination to prepare modified poly(L-lactide) (PLLA) materials. The non-isothermal melt- and cold-crystallization, melting process, optical and mechanical properties of modified PLLA were studied with the objective of correlating TAPH to PLLA crystallization and other performances. Non-isothermal melt crystallization showed that TAPH as a heterogeneous additive was able to promote crystallization and accelerate the crystallization rate of PLLA. Unfortunately, an increase in the cooling rate during cooling led to a decrease in crystallization ability. Non-isothermal cold-crystallization results disclosed that PLLA/TAPH’s coldcrystallization behavior depended on the heating rate; and upon a given heating rate, with an increase in TAPH loading, a shift toward the low-temperature side of the cold-crystallization peak further confirmed the nucleation effect of TAPH. The melting processes of PLLA/TAPH effectively depended on TAPH, the heating rate, and previous crystallization behaviors including non-isothermal crystallization and isothermal crystallization. Additionally, the double-melting peaks that appeared during the melt were thought to be due to melting-recrystallization. In terms of the optical property, the influence of TAPH on PLLA’s transparency was extremely negative as 2 wt% TAPH caused PLLA’s transparency to be zero. A comparative study on mechanical properties showed that TAPH could enhance PLLA’s tensile modulus and tensile strength, but elongation at break of any PLLA/TAPH was lower than that of pure PLLA.
Wydawca
Rocznik
Strony
100--112
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
  • College of Chemistry and Environmental Engineering, College of Pharmaceutical Sciences, Chongqing University of Arts and Sciences Chongqing, P.R. China
autor
  • College of Chemistry and Environmental Engineering, College of Pharmaceutical Sciences, Chongqing University of Arts and Sciences Chongqing, P.R. China
autor
  • College of Chemistry and Environmental Engineering, College of Pharmaceutical Sciences, Chongqing University of Arts and Sciences Chongqing, P.R. China
autor
  • College of Chemistry and Environmental Engineering, College of Pharmaceutical Sciences, Chongqing University of Arts and Sciences Chongqing, P.R. China
autor
  • College of Chemistry and Environmental Engineering, College of Pharmaceutical Sciences, Chongqing University of Arts and Sciences Chongqing, P.R. China
Bibliografia
  • [1] Shao J, Tang J, Pu SZ, Hou HQ. Crystallization behavior of homochiral polymer in poly(L-lactic acid)/poly(D-lactic acid) asymmetric blends: Effect of melting states. Polym Sci Ser. A. 2021;63(3):267–274. doi:10.1134/S0965545X2103010X
  • [2] Wu YC, Lin XT, Li JL, Zhang CAX, Liu YJ, Song LJ, Hao XH, Lin FL, Wang SL, Dong TGL. Polylactic acid/cerium fluoride films: Effects of cerium fluoride on mechanical properties, crystallinity, thermal behavior, and transparency. Materials. 2021;14(17):4882. doi:10.3390/ma14174882
  • [3] Rocher, L, Ylitalo AS, Di Luccio T, Miscioscia R, De Filippo G, Pandolfi G, Villani F, Zak A, Menary GH, Lennon AB, Kornfield JA. Interaction of Poly L-lactide and tungsten disulfide nanotubes studied by in situ X-ray scattering during expansion of PLLA/WS2NT nanocomposite tubes. Polymers. 2021;13(11):1764. doi:10.3390/polym13111764
  • [4] Xing Q, Wang ZF, Li RB, Dong X, Wang DJ. Effect of solubility of a hydrazide compound on the crystallization behavior of poly(L-lactide). RSC Adv. 2016;6:113377. doi:10.1039/c6ra24618d
  • [5] Lv CL, Li LL, Jiao ZX, Yan HH, Wang ZL, Wu ZX, Guo M, Wang Y, Zhang PB. Improved hemostatic effects by Fe3+ modified biomimetic PLLA cotton-like mat via sodium alginate grafted with dopamine. Bioact Mater. 2021;6(8):2346–2359. doi:10.1016/j.bioactmat.2021.01.002
  • [6] Hua S, Chen F, Wang HQ, Liu ZY, Yang W, Yang MB. Effect of cellulosic graft copolymer on crystallization and extension rheology properties of polylactic acid. Acta Polym Sin. 2016;8:1136–1144. doi:10.11777/j.issn1000-3304.2016.15376
  • [7] Weng MT, Qiu ZB. Effect of cyanuric acid on the crystallization kinetics and morphologyof biodegradable poly(L-lactide) as an efficient nucleating agent. Thermochim Acta. 2014;577:41–45. doi:10.1016/j.tca.2013.12.011
  • [8] Liang JZ, Zhou L, Tang CY, Tsui CP. Crystalline properties of poly(L-lactic acid) composites filled with nanometer calcium carbonate. Composites, Part B. 2013;45(1):1646–1650. doi:10.1016/j.compositesb.20 12.09.086
  • [9] Song P, Chen GY, Wei ZY, Chang Y, Zhang WX, Liang JC. Rapid crystallization of poly(L-lactic acid) induced by a nanoscaled zinc citrate complex as nucleating agent. Polymer. 2012;53(19):4300–4309. doi:10.1016/j.polymer.2012.07.032
  • [10] Teranishi S, Kusumi R, Kimura F, Kimura T, Aburaya K, Maeyama M. Biaxial magnetic orientation of zinc citrate as nucleating agent of poly(L-lactic acid). Chem Lett. 2017;46(6):830–832. doi:10.1246/cl.170092
  • [11] Li Y, Han CY, Yu YC, Xiao LG, Shao Y. Effect of content and particle size of talc on nonisothermal melt crystallization behavior of poly(L-lactide). J Therm Anal Calorim. 2019;135(4):2049–2058. doi:10.1007/s10973-018-7365-x
  • [12] Xiao HQ, Guo D, Bao JJ. Synergistic effects of N, N’-bis (benzoyl) sebacic acid dihydrazide and talc on the physical and mechanical behaviors of poly(L-latic acid). J Appl Polym Sci. 2015;132(7):41454. doi:10.1002/app.41454
  • [13] Naffakh M, Marco C. Isothermal crystallization kinetics and melting behavior of poly (L-lactic acid)/WS2 inorganic nanotube nanocomposites. J Mater Sci. 2015;50(18):6066–6074. doi:10.1007/s10853-015-915 6-0
  • [14] Li CH, Luo SS, Wang JF, Wu H, Guo SY, Zhang X. Conformational regulation and crystalline manipulation of PLLA through a self-assembly nucleator. Biomacromolecules. 2017;18(4):1440–1448. doi:10.1021/acs.biomac.7b00367
  • [15] Song P, Wei ZY, Liang JC, Chen GY, Zhang WX. Crystallization behavior and nucleation analysis of poly(L-lactic acid) with a multiamide nucleating agent. Polym Eng Sci. 2012;52(5):1058–1068. doi:10.1002/pen.22172
  • [16] Cui L, Wang YH, Guo Y, Liu Y, Zhao JC, Zhang CJ, Zhu P. Cooperative effects of nucleation agent and plasticizer on crystallization properties of stereocomplex-type poly(lactide acid). Polym Adv Technol. 2016;27(10):1301–1307. doi:10.1002/pat.3795
  • [17] Cai YH, Tang Y, Zhao LS. Poly(L-lactic acid) with the organic nucleating agent N,N,N-tris(1H-benzotriazole) trimesinic acid acethydrazide: Crystallization and melting behavior. J Appl Polym Sci. 2015;132(32):42402. doi:10.1002/app.42402
  • [18] Cai YH, Zhao LS, Tang Y. Thermal performance of a blend system based on poly(L-lactic acid) and an aliphatic multiamide derivative of 1H-benzotriazole. J Macromol Sci Part B Phys. 2017;56(1):64–73. doi:10.1 080/00222348.2016.1261594
  • [19] Liu PY, Zhen WJ, Bian SZ, Wang XF. Preparation and performance of poly (lactic acid)/fulvic acid benzhydrazide composites. Adv Polym Technol. 2018;37(8):2788–2798. doi:10.1002/adv.21951
  • [20] Liu PY, Zhen WJ. Structure-property relationship, rheological behavior, and thermal degradability of poly(lactic acid)/fulvic acid amide composites. Polym Adv Technol. 2018;29(8):2192–2203. doi:10.1002/pat.4327
  • [21] Zhang X, Yang B, Fan BM, Sun H, Zhang HJ. Enhanced Nonisothermal crystallization and heat resistance of poly(L-lactic acid) by D-sorbitol as a homogeneous nucleating agent. ACS Macro Lett. 2021;10(1):154–160. doi:10.1021/acsmacrolett.0c00830
  • [22] Lai WC, Lee YC. Effects of self-assembled sorbitolderived compounds on the structures and properties of biodegradable poly(L-lactic acid) prepared by melt blending. J Polym Res. 2019;26(1):10. doi:10.1007/s1 0965-018-1670-8
  • [23] Sun C, Li CX, Tan HY, Zhang YH. Enhancing the durability of poly(lactic acid) composites by nucleated modification. Polym Int. 2019;68(8):1450–1459. doi:10.1002/pi.5837 [24] Zhao LS, Cai YH. Modified PLLA: Effect of BPADD on properties. Green Mater. 2020;8(4):209–220. doi:10.1680/jgrma.20.00002
  • [25] Zhao LS, Cai YH. Insight on the effect of a piperonylic acid derivative on the crystallization process, melting behavior, thermal stability, optical and mechanical properties of poly(L-lactic acid). E-Polymers. 2020;20(1):203–213. doi:10.1515/epoly-2020-0027
  • [26] Pan PP, Liang ZC, Cao A, Inoue Y. Layered metal phosphonate reinforced poly(L-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces. 2009;1(2):402–411. doi:10.1021/am800106f
  • [27] Wang SS, Han CY, Bian JJ, Han LJ, Wang XM, Dong LS. Morphology, crystallization and enzymatic hydrolysis of poly(L-lactide) nucleated using layered metal phosphonates. Polym Int. 2011;60(2):284–295. doi:10.1 002/pi.2947
  • [28] Li C, Dou Q. Effect of metallic salts of phenylmalonic acid on the crystallization of poly(L-lactide). J Macromol Sci Part B Phys. 2016;55(2):128–137. doi:10.1080/00222348.2015.1125050
  • [29] Cai YH, Zhao LS. Thermal behavior and light transmittance of PLLA nucleated using strontium phenylmalonate. Emerging Mater Res. 2018;7(3):145–152. doi:10.1680/jemmr.18.00009
  • [30] Shi XW, Dai X, Cao Y, Huo CG, Wang XL. Degradable poly(lactic acid)/metal-organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Ind Eng Chem Res. 2017;56(14):3887–3894. doi:10.1021/acs.iecr.6b04204
  • [31] Sun JH, Li L, Li J. Effects of furan-phosphamide derivative on flame retardancy and crystallization behaviors of poly(lactic acid). Chem Eng J. 2019;369:150–160.
  • [32] Zou GX, Jiao QW, Zhang X, Zhao CX, Li JC. Crystallization behavior and morphology of poly(lactic acid) with a novel nucleating agent. J Appl Polym Sci. 2015;132:41367. doi:10.1016/j.cej.2019.03.036
  • [33] Roy M, Zhelezniakov M, de Kort GW, Hawke LGD, Leone N, Rastogi S, Wilsens CHRM. On the nucleation of polylactide by melt-soluble oxalamide based organic compounds. Polymer. 2020;14(17):4882. doi:10.1016/j. polymer.2020.122680
  • [34] Xu XK, Zhen WJ, Bian SZ. Structure, performance and crystallization behavior of poly (lactic acid)/humic acid amide composites. Polym-Plast Technol Eng. 2018;57(18):1858–1872. doi:10.1080/03602559.2018.1434670
  • [35] Yao JQ, Luo FL, Mao J, Li YT, Liu YD, Sun XL. The effect of nanocrystalline ZnO with bare special crystal planes on the crystallization behavior, thermal stability and mechanical properties of PLLA. Polym Test. 2021;100:107244. doi:10.1016/j.polymertesting.2021.107244
  • [36] Su ZZ, Guo WH, Liu YJ, Li QY, Wu CF. Non-isothermal crystallization kinetics of poly(lactic acid)/modified carbon black composite. Polym Bull. 2009;62:629–642. doi:10.1007/s00289-009-0047-x
  • [37] Zhao LS, Cai YH, Liu HL. Physical properties of Poly(L-lactic acid) fabricated using salicylic hydrazide derivative with tetraamide structure. Polym-Plast Technol Mater. 2020;59(2):117–129. doi:10.1080/25740881.2019.1625386
  • [38] Tian LL, Cai YH. Nucleated poly(L-lactic acid) with N, N’-oxalyl bis(benzoic acid) dihydrazide. Mater Res Express. 2018;5:045311. doi:10.1088/2053-1591/aabdcf
  • [39] Naffakh M, Rica P, Moya-Lopez C, Castro-Osma JA, Alonso-Moreno C, Moreno DA. The effect of WS2 nanosheets on the non-isothermal cold- and melt-crystallization kinetics of poly(L-lactic acid) nanocomposites. Polymers. 2021;13(13):2214. doi:10.3390/polym13132214
  • [40] Jing ZX, Shi XT, Zhang GC. Rheology and crystallization behavior of asymmetric PLLA/PDLA blends based on linear PLLA and PDLA with different structures. Polym Adv Technol. 2016;27(8):1108–1120. doi:10.100 2/pat.3841
  • [41] Lai WC, Lee YC. Effects of self-assembled sorbitolderived compounds on the structures and properties of biodegradable poly(L-lactic acid) prepared by melt blending. J Polym Res. 2019;26(1):10. doi:10.1007/s10965-018-1670-8
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f1c2b8a-692a-4d70-a036-cbe7bc47ea7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.