PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the optimization methods to the search of marine propulsion shafting global equilibrium in running condition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Full- film hydrodynamic lubrication of marine propulsion shafting journal bearings in running condition is discussed. Considerable computational difficulties in non-linear determining the quasi-static equilibrium of the shafting are highlighted. To overcome this problem the approach using two optimization methods (the particle swarm method and the interior point method) in combination with the specially developed relaxation technique is proposed. The developed algorithm allows to calculate marine propulsion shafting bending with taking into account lubrication in all journal bearings and exact form of journal inside bearings, compared to results of most of the publications which consider lubrication only in the aft most stern tube bearing and assume rest of bearings to be represented by points. The calculation results of typical shafting design with four bearings are provided. The significance of taking into account lubrication in all bearings is shown, specifically more exact values of bearings’ reactions, shafting deflections, minimum film thickness and maximum hydrodynamic pressure in the stern tube bearing in case of considering lubrication in all bearings.
Rocznik
Tom
Strony
172--180
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Admiral Makarov National University of Shipbuilding Ukrane Heroes av. 9 45000 Mykolaiv Ukraine
autor
  • Intellectual Maritime Technologies Buznika str. 5 45000 Mykolaiv Ukraine
  • Gdansk University of Technology Gabriela Narutowicza Street 11/12 80-233 Gdansk Poland
Bibliografia
  • 1. Andreau C., Ferdi F., Ville R. et al.: A method for determination of elastohydrodynamic behavior of line shafting bearings in their environment. In Proceedings of ASME/STLE International Joint Tribology Conference, San Diego, 2007. DOI:10.1115/IJTC2007-44056.
  • 2. Batrak Y.: New CAE package for propulsion train calculations. International conference on computer applications in shipbuilding, 3, Vol. 2., (2009). pp. 187–192.
  • 3. Batrak Y. A., Shestopal V. P., Batrak R. Y.: Propeller hydrodynamic loads in relation to propulsion shaft alignment and vibration calculations. Proceedings of the Propellers/ Shafting Symposium., 2012.
  • 4. Byrd R. H., Hribar M.E., Nocedal J.: An interior point algorithm for large-scale nonlinear programming. SIAM J Optimization, 9(4) , (1999), pp. 877–900. DOI:10.1137/ S1052623497325107.
  • 5. de Kraker A., Ostayena R. A. J. and Rixen D. J.: Calculation of Stribeck curves for (water) lubricated journal bearings. Tribology International, 40, (2007), pp. 459–469. DOI:10.1016/j.triboint.2006.04.012.
  • 6. Gurr C., Rulfs H.: Influence of transient operating conditions on propeller shaft bearings. Journal of Marine Engineering and Technology, 7(2) (2008), pp. 3–11. DOI:10.1080/2046 4177.2008.11020209.
  • 7. Ηirani Η., Rao Τ. V., Αthre, Κ. et al.: Rapid performance evaluation of journal bearings. Tribology International, 30 (11) (1997), pp. 825–834. DOI:10.1016/ S0301-679X(97)00066-2
  • 8. Hutchinson J. R.: Shear coefficients for Timoshenko beam theory. Journal of Applied Mechanics, 68(1), (2001), pp. 87-92. coefficientsfortimoshenkobeamtheory.
  • 9. Kennedy J., Eberhart R.: Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks, Vol 4, (1995), pp. 1942–1948. DOI:10.1109/ICNN.1995.488968.
  • 10. Litwin W.: Water-lubricated bearings of ship propeller shafts - Problems, experimental tests and theoretical investigations. Polish Maritime Research, 4(62), Vol 16, (2009) , pp. 42–50.
  • 11. Litwin W.: Influence of main design parameters of ship propeller shaft water-lubricated bearings on their properties. Polish Maritime Research, 4(67), Vol 17, (2010), pp. 39–45.
  • 12. Mourelatos Z.P., Parsons M. G.: Finite-element analysis of elastohydrodynamic stern bearings. SNAME Transactions, 93(11), (1985), pp. 225–259.
  • 13. Poli R.: Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution and Applications, 2008. DOI:10.1155/2008/685175.
  • 14. Przemieniecki J. S.: Theory of matrix structural analysis, Dover Publications Inc., New York, 1968.
  • 15. Segerlind L. J. (1976). Applied Finite Element Analysis, 1 ed., John Wiley and Sons Inc., New York/London/Sydney/ Toronto.
  • 16. ShaftDesigner – the shaft calculation software (2018). Retrieved from http://www.shaftdesigner.com/.
  • 17. ShaftDesigner – the shaft calculation software by IMT (2018). Retrieved from http://shaftsoftware.com/.
  • 18. Shi Y., Eberhart R. A.: Мodified particle swarm optimizer. 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), 1998, pp. 69–73. DOI:10.1109/ICEC.1998.699146.
  • 19. Stachowiak G. W., Batchelor A. W.: Engineering tribology, Butterworth Heinemann. 2001.
  • 20. Vulic N.: Advanced shafting alignment: Behaviour of shafting in operation. Brodogradnja, 52, (2004), pp. 203–212.
  • 21. Waltz R., Morales J., Nocedal J. et al.: An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical Programming, 107(3), (2006) , pp. 391–408. DOI:10.1007/s10107-004-0560-5.
  • 22. Wright M. H.: The interior-point revolution in optimization: history, recent developments, and lasting consequences. Bulletin of the American Mathematical Society, 42, (2005), pp. 39–56.
  • 23. Xie Z., Rao Z., Ta N. et al.: Investigations on transitions of lubrication states for water lubricated bearing. Part I: determination of friction coefficients and film thickness ratios. 68(3), (2016) , pp. 404–415. DOI: 10.1108/ILT-10-2015-0146
  • 24. Xie Z., Rao Z., Ta N. et al.: Investigations on transitions of lubrication states for water lubricated bearing. Part II: further insight into the film thickness ratio lambda. Industrial Lubrication and Tribology, 68(3), (2016), pp. 416–429. DOI: 10.1108/ILT-10-2015-0147
  • 25. Xing H., Wu Q., Wu Z. et al.: Elastohydrodynamic lubrication analysis of marine sterntube bearing based on multi-body dynamics. In 2012 International Conference on Future Energy, Environment, and Materials, 2012, pp. 1046–1051. DOI:10.1016/j.egypro.2012.01.167.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f15d2d5-a287-4973-943d-f0c3adcb981a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.