PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cosmetic wastewater treatment using coagulation and Fenton processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The cosmetic wastewater was treated by coagulation and Fenton process. COD of raw wastewater was 2888 mg/l. The effectiveness of these processes, defined as a decrease of COD was 66.4% for coagulation for a FeCl3 dose 900 mg/l and 87.7% (to 295mg/l COD) for Fenton process for H2O2/Fe2+ doses 3000/1000mg/l. The contribution of coagulation in Fenton process was defined as 71.3% of the total treatment effect. The calculated H2O2 efficiency is high and for optimal doses reached 149.3%. The optimal pH of Fenton process is 3.0. Even a small change in its value leads to a rapid decrease in the efficiency of oxidation and hence in the effects of the process. The kinetics of the Fenton process can be described as d[COD]/dt =-a tm [COD], where t stands for time, while the a and m are constants, depending on the initial concentration of the reagents. It has been proved that the cosmetic wastewater is susceptible to purification by means of coagulation and Fenton process.
Rocznik
Strony
36--42
Opis fizyczny
Bibliogr. 33 poz., wykr., tab.
Twórcy
autor
  • Warsaw University of Technology, Department of Informatics and Environmental Quality Research Faculty of Environmental Engineering, Nowowiejska 20, 00-653 Warsaw, Poland
  • Warsaw University of Technology, Department of Informatics and Environmental Quality Research Faculty of Environmental Engineering, Nowowiejska 20, 00-653 Warsaw, Poland
autor
  • Warsaw University of Technology, Department of Informatics and Environmental Quality Research Faculty of Environmental Engineering, Nowowiejska 20, 00-653 Warsaw, Poland
Bibliografia
  • [1] El-Gohary F., Tawfik A., Mahmoud U.: Comparative study between chemical coagulation/precipitation (C/P) versus coagulation/ dissolved air flotation (C/DAF) for pre-treatment of personal care products (PCPs) wastewater, Desalination, 252, pp. 106–112, 2010
  • [2] Esplugas S., Bila D. M., Krause L. G., Dezotti M.: Ozonation and advanced oxidation technologies to remove disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents, Journal of Hazardous Materials, 149, pp. 631-642, 2007
  • [3] Joss A., Keller E., Alder A. C., Gobel A., McArdell C. S., Ternes T.: Removal of pharmaceuticals and fragrances in biological wastewater treatment, Water Research, 39, pp. 3139-3152, 2005
  • [4] Reif R., Suárez S., Omil F., Lema J. M.: Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage, Desalination, 221, pp. 511–517, 2008
  • [5] Rosal R., Rodrıguez A., Perdigon-Melon J. A., Petre A., Garcıa-Calvo E., Gomez J. M.: Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation, Water Research, 44, pp. 578 – 588, 2010
  • [6] Thornton I., Butler D., Docx P., Hession M., Makropoulos C., McMullen M.: Pollutants in urban wastewater and sewage sludge. Luxembourg: Office for Official Publications of the European Communities, 2001
  • [7] Ricking M., Schwarzbauer J., Hellou J., Svenson A., Zitko V.: Polycyclic aromatic musk compounds in sewage treatment plant effluents of Canada and Sweden – first results, Marine Pollution Bulletin, 46, pp. 410-417, 2003
  • [8] Schlumpf M., Schmid P., Durrer S., Conscience M., Maerkel K., Henseler M., Gruetter M., Herzog I., Reolon S., Ceccatelli R., Faass O., Stutz E., Jarry H., Wuttke W., Lichtensteiger W.: Endocrine activity and developmental toxicity of cosmetic UV filters – an update, Toxicology, 205, pp. 113 – 122, 2004
  • [9] HERA: Human & Environmental Risk Assessment on ingredients of Household Cleaning Products Polycyclic musks AHTN (CAS 1506-02-1) and HHCB (CAS 1222-05-05), 2004
  • [10] Bester K.: Retention characteristics and balance assessment for two polycyclic musk fragrances (HHCB and ATHN) in a typical German Sewage treatment plant, Chemosphere, 57, pp. 863-870, 2004
  • [11] Aloui F., Kchaou S., Sayadi, S.: Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability, Journal of Hazardous Materials, 164, pp. 353–359, 2009
  • [12] Perdigon-Melon J., Carbajo J., Petre A., Rosal R., Garcıa-Calvo E.: Coagulation-Fenton coupled treatment for ecotoxicity reduction in highly polluted industrial wastewater, Journal of Hazardous Materials, 181, pp. 127-132, 2010
  • [13] Naumczyk J., Marcinowski P., Bogacki J., Wiliński P.: Oczyszczanie ścieków z przemysłu kosmetycznego za pomocą procesu koagulacji, Annual Set The Environment Protection, 15, pp. 875- 891, 2013
  • [14] Naumczyk J., Bogacki J., Marcinowski P., Kowalik P.: Cosmetic wastewater treatment by coagulation and advanced oxidation processes, Environmental Technology, 35 (5), pp. 541-548, 2014
  • [15] Boroski M., Rodrigues A. C., Garcia J. C., Sampaio L. C., Nozaki J., Hioka N.: Combined electrocoagulation and TiO2 photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries, Journal of Hazardous Materials, 162, pp. 448–454, 2009
  • [16] Bautista P., Mohedano A. F., Gilarranz M. A., Casas J., Rodriguez J. J.: Application of Fenton oxidation to cosmetic wastewaters treatment, Journal of Hazardous Materials, 143, pp. 128–134, 2007
  • [17] Carballa M., Manterola G., Larrea L., Ternes T., Omil F., Lema J.: Influence of ozone pre-treatment on sludge anerobic digestion: Removal of pharmaceutical and personal care products, Chemosphere, 67, pp. 1444-1452, 2007
  • [18] Bautista P., Mohedano A., Menendez N., Casas J., Rodriguez J. J.: Catalytic wet peroxide oxidation of cosmetic wastewaters with Fe-bearing catalysts. Catalysis Today, 151, pp. 148–152, 2010
  • [19] Hijosa-Valsero M., Matamoros V., Martin-Villacorta J., Becares E., Bayona J.: Assessment of full-scale natural systems for removal of PPCPs from wastewater in small communities, Water Research, 44, pp. 1429-1439, 2010
  • [20] Burek M.: Raport o wdrożonych rozwiązaniach w zakładowej oczyszczalni ścieków AVON Operations Polska Sp. z o. o., Gaz, woda i technika sanitarna, 12, pp. 31-33, 2008
  • [21] Kang Y. W., Hwang K.-Y.: Effects of reaction conditions on the oxidation efficiency in the Fenton process, Water research, 34, pp. 2786-2790, 2000
  • [22] Anielak A. M., Maluarte D. J.: Adsorption Of Acid Dyes On Active Carbon, Annual Set The Environment Protection, 4, pp. 527 – 543, 2002
  • [23] Carballa M., Fink G., Omil F., Lema J., Ternes T.: Determination of the solid-water distribution coefficient (Kd) for pfarmaceuticals, estrogens and musk fragrances in digested sludge, Water Research, 42, pp. 287-295, 2008
  • [24] Suarez S., Lema J., Omil F.: Removal of Pharmaceuticals and Personal Care Products (PPCPs) under nitryfing and denitryfing conditions, Water Research, 44, pp. 3214-3224, 2010
  • [25] Bapuponnusami A., Muthukumar K.: A review on Fenton and improvements to the Fenton process for wastewater treatment, Journal of Environmental Chemical Engineering, 2, pp. 557-57, 2014
  • [26] Hernandez–Ortega M., Ponziak T., Barrera–Diaz C., Rodrigo M. A., Roa–Morales G., Bilyeu B.: Use of combined electrocoagulation – ozone process as a pre – treatment for industrial wastewater, Desalination, 250, pp. 144 – 149, 2010
  • [27] Rivas F.J., Beltran F.J., Frades J., Buxeda P.: Oxidation of p-hydroxybenzoic acid by Fenton’s reagent, Water Research, 35, pp. 387–396, 2001
  • [28] Eisenhauer H.R.: Oxidation of phenolic wastes, Journal of the Water Pollution Control Federation, 36, pp. 1116–1128, 1964
  • [29] Ma Y.S., Huang S.T., Lin J.G.: Degradation of 4-nitro phenol using the Fenton process, Water Science and Technology, 42, pp. 155–160, 2000
  • [30] Babuponnusami A., Muthukumar K.: Degradation of phenol in aqueous solution by Fenton, sono-Fenton, Sono-photo-Fenton methods, Clean-Soil Air Water, 39, pp. 142–147, 2011
  • [31] Wu Y., Zhou S., Qin F., Zheng K., Ye X.: Modeling the oxidation kinetics of Fenton’s process on the degradation of humic acid, Journal of Hazardous Materials, 179(1-3), pp. 533-539, 2010
  • [32] Godala M., Nowicki L.: Kinetics of dihydroxyphenols oxidation by Fenton reagent, Ecological Chemistry and Engineering S, 9(1), pp. 43-52, 2002
  • [33] Wu Y., Zhou S., Zheng K., Ye X., Quing F.: Mathematical model analysis of Fenton oxidation of landfill leachate, Waste Management, 31(3), pp. 468-474, 2011
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f13f1e1-73aa-4976-8e97-36a77d583b49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.