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Abstract 

Buckling of the stiffened flange of a thin-walled member is reduced to the buckling analysis of the cantilever 

plate, elastically restrained against rotation, with the free edge stiffener, which is susceptible to deflection.

Longitudinal stress variation is taken into account using a linear function and a 2nd degree parabola. Deflection 

functions for the plate and the stiffener, adopted in the study, made it possible to model boundary conditions and 

different buckling modes at the occurrence of longitudinal stress variation. Graphs of buckling coefficients are 

determined for different load distributions as a function of the elastic restraint coefficient and geometric details of 

the stiffener. Exemplary buckling modes are presented.   

Keywords: thin-walled members, local buckling, distortional buckling, elastic restraint of the 

edge, longitudinal stress variation 

1. INTRODUCTION

Presently used thin-walled members with open sections are characterised by high slenderness of the 

component walls (flanges, webs, etc.) Consequently, they are sensitive to local phenomena related 

to the stability loss of compressed walls. For that reason, the free edge of the cantilever compressed 

flange is often strengthened with the edge stiffener, resulting in an increase in the buckling critical 

stress [1]. 
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Member is in uniform compression and a longitudinal stress variation occurs along the bar segment.

Thin-walled bar segment is defined as a distance between transverse stiffeners (ribs, diaphragms), or

Additionally, the section stability loss is also changed from local to distortional buckling mode, or 

the interaction of both [2].

In many load cases that are important from the technical standpoint, the stiffened flange of the 

supports that ensure the stiff section contour. A single or a double edge lip, or a welded stiffening 

element (e.g., a flat bar having the same or greater wall thickness) can act as a stiffener. In practice, 

such a flange can be analysed as a cantilever plate, elastically restrained against rotation, with the 

other edge stiffener which is susceptible to deflection [3,4].

The problem of distortional buckling of the compressed cantilever plate with the free edge stiffener, 

at the constant stress intensity along the length, was solved in study [1]. In this case, it was assumed 

that the edge stiffener is symmetrical with respect to the plate middle line. For such a system,

constructed of the plate and the “beam stiffener”, an exact solution was obtained, as a result of 

integration of the stability equations. Study [1] also presented the graphs of buckling coefficients (k)

and approximation formulas obtained with the use of the energy method. In study [4], the scope of 

investigations presented in [1] was extended to include the case of the cantilever plate, elastically 

restrained against rotation around the supported edge, for the same thickness of the plate and the 

stiffener (ts = tL). Furthermore, as in study [1], the effect of the torsional stiffness of the stiffener 

was disregarded. 

Study [3] presented the results of investigations into the stability of cantilever plates with 

longitudinal free (unstiffened) edge at longitudinal stress variation and limit conditions (pin support 

and full fixity) on the other edge. The transverse edges were assumed to be simply supported. The 

formulas were derived for the work done by external forces at the load producing longitudinal stress 

distribution according to a linear function and a 2nd degree parabola.

The stiffened cantilever wall is, in most cases, elastically restrained against rotation by the other 

internal wall (e.g., in the member web). In this case, the critical stress of local and distortional 

buckling depends upon the slenderness of the cantilever wall, longitudinal stress variation, elastic 

restraint coefficient and the stiffener geometry. 

In studies [5,6], the problem of the distortional buckling of the cold-formed member was solved by 

adopting the flexural-torsional stability loss model of the substitute thin-walled bar in the rotational-

elastic medium. The rotational spring stiffness (kφ), which accounts for the plate bending stiffness 
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the of the web wall, was determined. The disadvantageous effect of compressive stress was 

accounted for in an approximate way. In that case, the substitute bar section consisted of the plate 

(compressed flange) and the edge stiffener (lip). In study [7], an interactive model of the buckling of

the stiffened flange and web was adopted, which accounted for the geometric stiffness of those

elements.  The model employed in study [8] was similar to that in [5, 6]. The difference was that the 

substitute rotational spring stiffness kφ*<kφ was determined on the basis of the translational 

stiffness ky located at the centre of gravity of the plate – stiffener system. In this way, the effect of 

the bending stiffness of the flange itself was additionally taken into consideration. In the studies 

quoted above, constant stress distribution along the length of the thin-walled element was assumed.

The buckling model chosen in the code [9] was that of flexural, axially compressed “substitute bar”,

which consisted of appropriate effective widths of the flange and the stiffener, after taking into 

account the possible local buckling of those. In this computational model, the “substitute bar” sits 

on the translational–elastic foundation having the module K, and is uniformly compressed along the 

length.   

Figure 1. Compressed flange isolated from thin-walled bar segment  

In study [10], the problem of the local buckling of axially compressed, non-symmetrically elastically 

restrained (Cθ1 ≠ Cθ2) internal plate at longitudinal stress variation was solved.

To be able to solve many problems related to thin-walled member buckling under complex load 

cases, it is necessary to have solutions for distortional stability loss of the cantilever plate with the 

free edge stiffener, when the longitudinal stress variation is accounted for. Such solutions, however, 

are not available. 

In the present study, the stability loss of the flange of the thin-walled member with open section is

reduced to the buckling analysis of the cantilever plate with the other edge stiffened and susceptible 
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to deflection. The plate is elastically restrained against rotation and longitudinal stress variation is 

taken into consideration. The computational model containing the cantilever plate and the “beam

stiffener”, the same as in studies [1,4], is adopted in the present paper.

2. BOUNDARY CONDITIONS OF THE STIFFENED FLANGE 

The following assumptions are made in the computational model: 1) the compressed flange of the 

thin-walled member behaves as an cantilever plate, elastically restrained on one side, the other edge 

of which is flexibly supported against deflection by the stiffener, 2) the origin of the local 

coordinate system of the plate (xs, ys, zs) coincides with intersection of the maximally loaded 

transverse edge with the elastically restrained longitudinal edge (see Fig.1), 3) transverse plate edges 

and the stiffener ends on the segment transverse edges are simply supported, 4) deflections of the 

plate free edge (ys=bs) are the same as those of stiffener, 5) stress of the possible local buckling of 

the stiffener is much greater than the stress of distortional or local buckling of the flange. In the case 

important from the technical standpoint, the compressed flange contains a stiffener of the same 

thickness as the plate (tL=ts). The effect of the flange elastic restraint against rotation at ys=bs, i.e. 

the effect of the stiffener torsional stiffness on the critical stress of the distortional buckling, is 

therefore negligible [1] and can be disregarded. The present study demonstrates that in such a 

situation, there is an advantageous effect of two-sided (non-symmetrical) restraint against rotation 

on the local buckling critical stress. Furthermore, the advantageous effect of the stiffener torsional 

stiffness on both local and distortional buckling critical stress is observed when tL>ts. In the present 

study, similar to [1], it is assumed that the edge stiffener cross-section has the shape of a narrow 

rectangle and the stiffener is symmetrical with respect to the middle plane of the plate. The stiffener 

thickness tL is equal to, or greater than that of the plate ts (see Fig.1.) The degree of the elastic 

restraint against rotation of the longitudinal supported edge (ys = 0) is described by means of:

1) coefficient ε, in accordance with [1], varying from 0 for the simple support to ∞ for a built-in 

edge, 2) index of fixity κ, which according to [11,12] changed from 0 (for the simple support) to 

1 (for a built-in edge ), as follows: 

(2.1) ss DbC�� �

(2.2) � ��� CbD ss211 ��

152 A. SZYCHOWSKI

Unauthenticated
Download Date | 11/26/15 3:26 PM



where: C� - rotational spring stiffness of the supported edge, which is equal to the bending moment 

that occurs in the rotation by the unit angle, bs - plate (wall s) width, Ds – plate flexural rigidity.

The following dependences hold between the coefficient ε and the index κ [13]: 

(2.3) � ���� �� 2

(2.4) � ���� 	� 12

The approximate estimation of the rotational spring stiffness C� of the edge of the compressed 

flange, elastically restrained in the web of the thin-walled bar, can be expressed as follows [8]:
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where: η = 2 for the section subjected to compression, η = 4 for the section subjected to bending (in 

the web plane), Dw - plate flexural rigidity of the web, hw – web height between flange axes, σcr
D –

distortional buckling stress, σcr,w – critical stress of the local web buckling for the critical length (lcr)

of the half-wavelength of the flange distortional buckling. It is assumed that deformations are 

continuous and the bending moments on the edge of flange-to-web connection are equal. It should 

be noted that the expression in parentheses in Eq. (2.5) accounts, in an approximate way, for the 

disadvantageous impact of compressive stress in the web [8]. The critical stress in the stiffening 

wall (σcr,w), see Eq. (2.5), corresponds to the length of the distortional buckling of the flange. The 

critical stress can be estimated, in accordance with [14, 5, 6, 8], using the following formulas: 

a) for the compressed web: 
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b) for the web bent in its plane: 
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On the basis of computations performed in the present study, it can be stated that for symmetrical 

restraint (see Fig.1), the critical length of distortional buckling (for the range most frequently found 
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in practice, i.e. for the fixity index 0 ≤ κ ≤ 0.7)  can be estimated, according to  [5, 6], from the 

formula: 

(2.8)
25.0
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where: n =1 for the section subjected to compression, n =2 for the section subjected to bending, and

IL = tLbL
3/12 – moment of inertia of the stiffener.

Computations become iterative, because to calculate the rotational spring stiffness Cθ, it is necessary 

to know the critical stress σcr
D, which, according to Eq. (2.2),  depends on κ, and thus on Cθ. The 

process, however, is converging fast, and most often it is sufficient to perform only two or three 

iterations.

3. DEFLECTION FUNCTIONS

The section flange is composed of the cantilever plate, elastically restrained on one side [13], and 

the “beam stiffener”, which is susceptible to deflection [4]. To approximate the complex buckling 

mode, the following formulas are used:

a) for the plate: 
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b) for the “beam stiffener”: 

(3.2) � � 
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where: ts, bs – plate (wall s) thickness, width, ls – length of the plate and the stiffener, fi2, fip – free, 

dimensionless parameters of the deflection function.

Deflection functions that are assumed make it possible to identify: 1) the distortional buckling mode 

of the plate – stiffener system, 2) local buckling mode of the internal plate supported by the edge 

stiffener being “insusceptible” to deflection, and 3) interactive mode of local and distortional 

buckling. 
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4. STRESS STATE IN THE SECTION FLANGE

In the stability analysis of the compressed flange, being a component of the thin-walled member 

with an open section, in which the hypothesis on flat sections walls is accepted, normal stress 

distribution (see Fig.1) can be presented as follows: 

(4.1) )(0 six x��� �

where: σ0 – maximum compressive stress (positive) on the edge containing the origin of the local 

system of coordinates (ys=0, see Fig.1), βi(xs) – function of the stress distribution along the plate 

length. In the present study, the following cases of longitudinal stress distribution are taken into 

consideration: 1) constant distribution (mi = 0),  2) linear distribution, and 3) non-linear distribution 

in accordance with the 2nd degree parabola. In cases 2 and 3, the function βi(xs) in Eq. (4.1) can be 

respectively presented as: 

(4.2)
sss lxmx 11 1)( 	��

(4.3) 22
22 1)( sss lxmx 	��

where: mi - coefficient that characterises longitudinal stress variation in accordance with formula: 

  
(4.4) 011 ��	�im

Variation of normal stress along the cantilever plate length, according to Eq. (4.1), can be obtained 

by generating shear stresses or longitudinal body forces (see Fig.1) with the distribution dependent 

on the loading conditions of thin-walled bar. The way of replacing shear stresses by appropriate 

distribution of body forces was described in study [15] for internal plates, and in [3] for cantilever 

plates. When the thin-walled member is bent, e.g. with respect to the major axis of stiffness of a 

typical C or Z section, at the height of the stiffener, non-uniform (linear) stress distribution occurs. 

To simplify the calculations of the critical load, it is assumed from the distortional buckling 

condition that mean stress acts in the stiffener: σ0=(σa+σb)/2 (see Fig.1). In this case, stress 

distribution in the stiffener can be written in accordance with Eq. (4.1). 
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5. ELASTIC STRAIN ENERGY AND THE WORK DONE BY EXTERNAL 

FORCES

In study [3], it was shown how to determine the total potential energy (Us = Vs,1 – Ls) of the 

compressed cantilever plate (without stiffened edge) when the deflection function is written as a 

polynomial-sine series, e.g. in the form of Eq. (3.1). In this case, the elastic strain energy (Vs,1) can 

be determined in the way proposed in study [16], and the function of external forces (Ls) can be 

determined from the sequence of formulas derived in [3].

The energy of the elastic restraint against rotation (Vs,2) of the supported plate edge (at ys = 0) is

determined from formula: 

(5.1)
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The energy of the stiffener in bending is calculated from formula: 

(5.2)
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When it is necessary to account for the advantageous effect of torsional stiffness of the stiffener, the 

torsional strain energy can be determined, according to [1], from the following formula:

(5.3)
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where: θ – stiffener rotation angle, CL – torsional rigidity, which, for stiffener having narrow 

rectangular cross-section [1], can be estimated as follows: 

(5.4) � ����
123

1 3 EtbC LLL

where: E – modulus of elasticity, ν – Poisson’s ratio.

The work done by external forces in the stiffener at flexural buckling and longitudinal stress 
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variation is calculated from the formula:
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where: AL = tLbL – stiffener cross-section area.

The work done by external forces in the stiffener at torsional buckling can be determined from 

formula: 

(5.6)
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where: J0 – polar moment of inertia of the stiffener (for rectangular section: J0= tLbL(bL
2+tL

2)/12 ).

6. CRITICAL STRESS

The critical stress (σcr) of local or distortional buckling of axially compressed, elastically restrained

against rotation member flange with a stiffener is referred to the most compressed plate edge. The 

critical stress is expressed with the following formula: 

(6.1) Ecr k�� �

where: σE - Euler’s stress for the plate in accordance with formula: 

(6.2)
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Plate buckling coefficients (k) is determined using the energy method. The total potential energy of 

the plate – stiffener system was determined from the formula: 

(6.3) 2,1,2,1,2,1, LLsLLsss LLLVVVVU 			����

where: Vs,1 – elastic strain energy of the plate in bending, according to [16], Vs,2 – energy of the 

elastic restraint, from Eq. (5.1), VL,1 – elastic strain energy of the stiffener in bending, from Eq (5.2), 
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VL,2 – elastic strain energy of the stiffener in torsion, from Eq. (5.3), Ls – work done by external 

forces in the plate, in accordance with [3],  LL,1, LL,2 – work done by external forces in the stiffener, 

from Eq. (5.5) and Eq. (5.6). 

The critical stress of the reliable buckling mode is calculated from the system of equations: 

(6.4) 0��� ips fU

reducing the stability problem to eigenproblem of  determining eigenvalues and eigenvectors.

In the present study, computational program Ncr-plate-cantilever-sym-stiffener.nb developed with 

Mathematica® software package is employed to determine coefficients k. The program makes it 

possible to calculate the critical stress and coefficients k and to present the calculation results in a 

graphic form (e.g. graphs, buckling modes). The plate deflection function is adopted according to 

Eq. (3.1), with p0 = 4, and with initial values of the fixity index. According to Eq. (2.2), the fixity 

index varies from κ=0, for simply supported edge, to κ=1, for built-in edge. The stiffener deflection 

function is adopted according to Eq. (3.2). Parameter i0, which in Eq. (3.1) and Eq. (3.2) specifies 

the number of half-wavelengths of the sine function in the direction of axis xs is selected with regard 

to the plate dimension ratio (γs=ls/bs) and the reliable buckling mode. On the basis of the analysis of 

convergence of the results, analogous to the one presented in study [3], for the calculations of 

stiffened plates in the range γs�20, bL/bs≥0.1 and 0�m�1, parameter i0 can be taken from the interval 

10�i0�20. The graphs of coefficients k presented in this study are plotted for E=205 GPa and �=0.3.

Table 1 shows how curve numbers in the graphs (Fig.2 and Fig.3) are assigned to coefficient ε and

index κ.

Table 1. Assignment of curve numbers from Figs 2 and 3 to the coefficient � and index κ

Nr 1 2 3 4 5 6 7 8
ε 0 0.2 0.6 1.5 3 8 30 105

κ 0 0.091 0.231 0.429 0.6 0.8 0.938 1

Fig.2 shows graphs of coefficient k for the elastically restrained (curve number in accordance with 

Table 1) cantilever plate (bs/ts=35) with edge stiffener (bL/bs=0.2, tL/ts=1), at linear stress 

distribution (m1=1). The upper dotted line is used to separate the range (γs<2.5÷3) of occurrence of 

the interactive, local – distortional (LD) buckling mode from the basic range (2.5÷3<γs), in which 

distortional buckling is found (D). The lower broken line marks the graph of coefficient k that is 

determined when the torsional stiffness of the stiffener is disregarded for κ=0. Comparison of the 
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graphs (curve 1 – solid line versus broken line) indicates that for tL/ts=1, the effect of the stiffness of

the stiffener torsion on distortional buckling is minimal and, from the technical standpoint, can be 

disregarded [1,4]. With the growth of the fixity index κ, coefficients k increase. However, when 

parameter γs grows, coefficients k decrease.  

Figure 2. Graphs of coefficient k for different values of index κ (Table 1) for m1=1

Fig.3 shows graphs of coefficient k for the elastically restrained (curve number in accordance with 

Table 1) cantilever plate (bs/ts=60) with edge stiffener (bL/bs=0.25, tL/ts=2), at non-linear stress 

distribution (m2=1). The dotted line separates the ranges of occurrence of local buckling modes (L) 

of the “internal plate” from those of distortional buckling (D) of the cantilever plate-stiffener 

system. In this case, practically no occurrence of the interactive mode (LD) is found. Graphs of 

coefficients k at the buckling mode change (curve intersections with the dotted line) are 

characterised by a typical “fault”. As in the previous figure, the bottom broken line marks the 

coefficient k that is determined when the torsional stiffness of the stiffener is disregarded for κ=0.

Comparison of the graphs (curve 1 – solid line versus broken line) indicates that for tL/ts=2, the 

effect of the stiffness of the stiffener torsion is significant for both local buckling (av. increase of 

approx. 28%) and distortional buckling. The range of occurrence of the reliable buckling modes is 

also changed, because taking into account the torsional stiffness enlarges the range (γs) of

distortional buckling occurrence (compare the coordinate of the curve 1 “fault” with the broken 

line). Similar results are obtained for other figures (Figs. 2 ÷ 6). Additionally, the comparison of the 

graphs indicates that an increase in index κ is accompanied by an increase in coefficients k of the 

critical stress, for both local and distortional buckling. Increase in coefficients k, is much higher for 

distortional buckling. Beyond the “fault”, however, coefficients k decrease rapidly with the plate 
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length, especially for the low values of κ (see curves no. 1,2,3,4 in Fig.3). 

Figure 3. Graphs of coefficient k for different values of index κ (Table 1) for m2=1

Fig.4 shows graphs of coefficient k for the elastically restrained (ε=2, κ=0.5) cantilever plate (bs/ts

=50) with the edge stiffener (bL/bs=0.25; tL/ts=1.5) at linear stress distribution along the plate length, 

according to Eq. (4.1) and Eq. (4.2) for m1 = 0; 0.25; 0.5; 0.75 and 1. As in the previous figures, the 

bottom broken line marks the graph of coefficient k that is determined when the torsional stiffness 

of the stiffener is disregarded for m1=0. In this case, the comparison of the graphs indicates that for 

tL/ts=1.5, the advantageous effect of the stiffness of the stiffener torsion is also noticeable, especially 

for local buckling. Dotted lines are used to separate the ranges of occurrence of local buckling (L),

local and distortional buckling interaction (LD), and distortional buckling (D). With an increase in 

the value of parameter m1, the range of occurrence of the interactive buckling mode (LD) is 

enlarged. 
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Figure 4. Graphs of coefficient k for linear stress distribution and different values of m1

The curves of coefficient k for m1=0 (Fig. 4) are garland in character, both in the range of local 

buckling occurrence and in the distortional buckling range, which makes it possible to evaluate the 

number of half-wavelengths of the reliable buckling mode. For longitudinal stress variation (m1>0), 

with an increase in parameter mi, coefficients k increase and their graphs loose their garland 

character. In this case, buckling half-wavelengths are formed along the plate length. Those are 

varied in length and have decreasing amplitudes [13].  

Exemplary buckling modes for the elastically restrained cantilever plate with the stiffener,

determined using the Ncr-plate-cantilever-sym-stiffener.nb software, are presented in Fig.5.

(geometric details, support and loading diagrams are included in this figure). The example 

corresponds to coefficients k (curve m1=1 in Fig.4.) of the critical stress that is characterised by 

different buckling modes. Fig.5a shows local buckling mode (on the range boundary L, γs=4.8). In 

Fig.5b, a fully developed interactive mode (approximately in the middle of the range LD, γs=5.5) 

can be seen, whereas in Fig.5c, the distortional buckling mode (on the range boundary D, γs=6.2) is 

shown. Note that the edge stiffener is removed from Fig.5abc to make the buckling mode more 

visible. 

In this case, the comparison of buckling modes shows that: 1) the local mode (L) “consists” of two 

basic buckling “half-wavelengths” that have radically different amplitudes (the “critical half-

wavelength” having the maximum amplitude [13] is found on the edge side that is more loaded 

xs=0), 2) the interactive mode (LD) is characterised by both “plate” and “beam” deflections, and 3) 

the distortional mode (D) consists of one, gently asymmetrical half-wavelength of the buckling of 

the cantilever plate with the stiffener (the maximum amplitude is found for the coordinate xs=120 < 

310/2=155 mm).   
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Figure 5. Buckling modes in an exemplary cantilever plate with an edge stiffener 

Fig.6 shows graphs of coefficient k for the elastically restrained (ε=1.5; κ=0.429) cantilever plate 

(bs/ts =40) with the edge stiffener (tL/ts=1) for different ratios bL/bs=0.1÷0.35 at linear stress 

distribution (m1=1). Dotted lines are used to separate the ranges of occurrence of local buckling (L),

local and distortional buckling interaction (LD), and distortional buckling (D). In this case, the 

comparison of the graphs indicates that an increase in the ratio bL/bs is accompanied by an increase 

in the coefficients of the critical stress of the reliable buckling mode. Additionally, it can be 

observed that in the range of distortional buckling (e.g. γs>10), a constant increment of the ratio 

bL/bs (from 0.1 to 0.35 with an interval of 0.05) is accompanied by the constant increment of 

coefficient k.

Figure 6. Graphs of coefficient k for different bL/bs ratios
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Fig.7 shows graphs of coefficient k for the elastically restrained (ε=3, κ=0.6) cantilever plate (bs/ts

=50) with the edge stiffener (bL/bs=0.3) for different ratios tL/ts=1÷2.5 at non-linear stress 

distribution (m2=1). Dotted lines mark the boundaries of ranges of the reliable buckling mode. In

this case, similar to Fig.3, practically no occurrence of the interactive mode (LD) is found. With an 

increase in the stiffener thickness, the value of buckling coefficient grows, especially for the local 

buckling of the internal plate. For instance, for γs=7.5 (local buckling), the increment of coefficient k

value between tL/ts=1 and 2.5 amounts to approx. 16%, and for γs=15 (distortional buckling), the 

increment is approx. 9%. As before, the lower broken line marks the coefficient k determined when 

the torsional stiffness of the stiffener is disregarded for tL/ts=1. In this case, the differences are 

observed primarily in the local buckling range (L), and are of the order of 10%.   

Figure 7. Graphs of coefficient k for different tL/ts ratios 

Fig.8 shows graphs of coefficient k for the elastically restrained (ε=1, κ=0.333) cantilever plate with 

the edge stiffener (bL/bs=0.15, tL/ts=1) for different slenderness of the plate bs/ts=20÷60 at linear 

stress distribution (m1=0.5). In the whole range γs, shown in Fig.8 (for individual slenderness 

values), the distortional buckling mode occurs (D). The comparison of results shows that an 

increase in the plate slenderness is accompanied by an increase in the advantageous effect produced 

by the plate “support” on the stiffener, and also by an increase in the values of buckling coefficients. 

It is obvious that the distortional buckling critical stress decreases due to a rapid drop of σE, related 

to the growing plate slenderness (see Eq. (6.2)).
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Figure 8. Graphs of coefficient k for different slenderness of the plate bs/ts

7. CONCLUSIONS

The computational model employed in the study, in which the degree of the wall elastic restraint 

and stress variation along the length of the thin-walled bar segment are taken into account, gives 

more accurate determination of the critical stress of the reliable buckling mode. That especially 

refers to cantilever plates with edge stiffener. For such plates, the reserves of the distortional critical 

resistance (i.e. critical resistance resulting from the condition of distortional buckling), which 

originate from the elastic restraint against rotation of the supported edge, are greater than for 

internal walls,  elastically restrained on two sides, with intermediate stiffener [1, 9].

The computational model is improved due to taking into account the torsional stiffness of the 

stiffener and the work done by the axial force in the stiffener. That makes it possible to represent, in 

a more accurate way, the actual stability behaviour of the thin-walled member section walls. The use 

of adopted deflection functions for the cantilever plate and the stiffener in the study allows the 

analysis of the distortional buckling of the plate – stiffener system, of the local buckling of the 

“internal” plate supported by “inflexible” edge stiffening, and also of the interactive mode at 

longitudinal stress variation. Additionally, deflection functions also make it possible to account for 

the elastic restraint of the member section wall against rotation on both the edge supported by the

web and on the flexible support against deflection (on the “free edge”). An increase in the value of 

index κ, according to Eq. (2.2), and in parameter mi of the longitudinal stress distribution, according 

to Eq. (4.4), results in an increase in coefficients of the critical stress of local and distortional 

buckling in respective ranges γs. The same trend is found for an increase in the ratios: 1) bL/bs and
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2) tL/ts, and for distortional buckling, for an increase in ratio: 3) bs/ts (for the constant value of bL/bs).

In this third case, coefficient k grows, but the critical stress obviously decreases due to the reduction 

in σE for the growing slenderness of the plate. Lower values of the coefficient k, at the same values 

of parameters κ, m and γs, are obtained for non-linear stress distribution along the plate length. None

of the graphs presented in this study (Figs. 2 - 4 and 6 - 8), except for curves m1=0 in Fig.4, are 

typical garland curves, as it is the case for m=0 [1, 14, 4, 9].  Therefore, the graphs do not 

unequivocally indicate the number of half-wavelengths of the reliable mode of local or distortional 

buckling which are generated over the length of the thin-walled bar segment. That results from 

longitudinal stress variation. Complex modes of buckling that occur in this case can be determined 

with the Ncr-plate-cantilever-sym-stiffener.nb software. The comparison of coefficients k graphs 

presented in this study indicates that, for short segments, the reliable mode of stability loss of the 

stiffened flange can be local buckling of the “internal plate”. For longer segments, however, the 

reliable mode of stability loss is the distortional buckling of the plate – stiffener system. In many 

cases, on the boundary of ranges (L and D), interactive buckling mode (LD) was also revealed.
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WYBOCZENIE PÓŁKI USZTYWNIONEJ ELEMENTU CIENKOŚCIENNEGO

PRZY WZDŁUŻNEJ ZMIENNOŚCI NAPRĘŻEŃ

Słowa kluczowe: kształtowniki cienkościenne, wyboczenie lokalne, wyboczenie dystorsyjne, sprężyste zamocowanie 
krawędzi, wzdłużna zmienność naprężeń

STRESZCZENIE: 

Współcześnie stosowane elementy cienkościenne o przekroju otwartym charakteryzują się dużymi smukłościami 

ścianek. W związku z tym są wrażliwe na zjawiska lokalne związane z ich wyboczeniem. Z tego punktu widzenia, 

krawędź swobodną ściskanej ścianki wspornikowej wzmacnia się często usztywnieniem krawędziowym, powodując 

wzrost naprężeń krytycznych i zmianę miarodajnej postaci wyboczenia. Usztywniona ścianka wspornikowa jest w 

większości przypadków sprężyście zamocowana przeciw obrotowi w ściance przęsłowej (np. w środniku kształtownika

cienkościennego) i często występuje w niej wzdłużna zmienność naprężeń.

W pracy utratę stateczności półki elementu cienkościennego o przekroju otwartym sprowadzono do analizy wyboczenia 

sprężyście zamocowanej przeciw obrotowi płyty wspornikowej z podatnym na ugięcie usztywnieniem drugiej krawędzi.

Jednocześnie uwzględniono wzdłużną zmienność naprężeń.

W modelu obliczeniowym przyjęto następujące założenia: 1) ściskana półka kształtownika cienkościennego zachowuje 

się jak jednostronnie sprężyście zamocowana płyta wspornikowa z drugim brzegiem podatnie podpartym na ugięcie 

„belką” usztywnienia, 2) początek lokalnego układu współrzędnych płyty (xs, ys, zs) umieszczono na przecięciu (styku) 

maksymalnie obciążonej krawędzi poprzecznej ze sprężyście zamocowaną krawędzią podłużną (por.rys.1), 3) 

poprzeczne krawędzie płyty oraz końce „belki” usztywnienia na poprzecznych krawędziach segmentu są swobodnie 

podparte, 4) występuje zgodność ugięć swobodnej krawędzi płyty (ys=bs) z ugięciami usztywnienia, 5) naprężenia 

ewentualnego wyboczenia lokalnego usztywnienia są znacznie większe od naprężeń wyboczenia dystorsyjnego lub 

lokalnego półki. 

Ponadto w pracy przyjęto, że usztywnienie krawędzi swobodnej ma przekrój wąskiego prostokąta i jest symetryczne 

względem płaszczyzny środkowej płyty, a jego grubość jest równa lub większa od grubości płyty. 

Stopień sprężystego zamocowania przeciw obrotowi uzależniono od sztywności obrotowej podłużnej krawędzi 

podpartej (ys=0) i opisano za pomocą: 1) współczynnika ε zmieniającego się od 0 dla podparcia przegubowego do ∞ dla 

pełnego utwierdzenia, oraz 2) wskaźnika utwierdzenia κ zmieniającego się od 0 (dla przegubu) do 1 (dla pełnego 

utwierdzenia).

Do aproksymacji postaci wyboczenia płyty wspornikowej i usztywnienia zastosowano funkcje zbudowane z podwójnych

szeregów wielomianowo - sinusowych. Tak przyjęte funkcje ugięć umożliwiły aproksymację: 1) postaci wyboczenia 

dystorsyjnego układu płyta – usztywnienie, 2) postaci wyboczenia lokalnego płyty „przęsłowej” podpartej na 

„niepodatnym” na ugięcie usztywnieniu krawędziowym, oraz 3) postaci interakcyjnej wyboczenia lokalnego i

dystorsyjnego na granicy przedziałów.

Zmienność naprężeń normalnych na długości płyty wspornikowej i usztywnienia uzyskano przez wprowadzenie 

wzdłużnych sił masowych (por.rys.1) o rozkładzie dobranym w zależności od sposobu obciążenia elementu

cienkościennego. 
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Płytowe współczynniki wyboczeniowe (k) wyznaczono metodą energetyczną. W tym celu opracowano w środowisku 

pakietu Mathematica® program obliczeniowy „Ncr-plate-cantilever-sym-stiffener.nb”. Program oblicza naprężenia 

krytyczne i współczynniki k oraz umożliwia graficzną prezentację wyników obliczeń i różnych postaci wyboczenia.  

Na rysunkach przedstawiono liczne wykresy współczynnika k w zależności od 1) wskaźnika κ sprężystego utwierdzenia, 

2) parametru mi wzdłużnego rozkładu naprężeń wg funkcji liniowej lub paraboli 2. stopnia, 3) szerokości i grubości 

usztywnienia oraz, 4) smukłości płyty. Zamieszczono również przykładowe postacie wyboczenia lokalnego (L),

dystorsyjnego (D) i interakcyjnego (LD).

Zastosowany w pracy model obliczeniowy prowadzi do dokładniejszego wyznaczenia naprężeń krytycznych 

miarodajnej postaci wyboczenia. Ze wzrostem wskaźnika κ oraz parametru mi rosną współczynniki naprężeń 

krytycznych wyboczenia lokalnego i dystorsyjnego w miarodajnych przedziałach γs = ls/bs. Mniejsze współczynniki k

przy tych samych wartościach parametrów κ, m oraz γs uzyskano dla nieliniowego rozkładu naprężeń na długości płyty.

Z porównania wykresów współczynnika k zamieszczonych w pracy wynika, że dla segmentów krótkich miarodajną 

postacią utraty stateczności półki usztywnionej może być wyboczenie lokalne „płyty przęsłowej”. Natomiast dla 

segmentów dłuższych miarodajną postacią utraty stateczności jest wyboczenie dystorsyjne układu: płyta – usztywnienie. 

W wielu przypadkach, na granicy przedziałów (L i D), ujawniono również interakcyjną postać wyboczenia (LD).
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