Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
The imaging structures in anisotropic media by seismic migration
Języki publikacji
Abstrakty
Na podstawie koncepcji MG(F-K) migracji (autorzy: A. Kostecki, A. Półchłopek) w ośrodkach izotropowych sformułowano algorytmy wstecznej propagacji fal w dziedzinie liczb falowych (K) i częstości (F) w ośrodkach anizotropowych VTI (vertical transverse isotropy), HTI (horizontal transverse isotropy) oraz TTI (tilted transverse isotropy). Pionowe liczby falowe kz dla poszczególnych typów ośrodków zostały wyprowadzone z dyspersyjnego równania dla nachylonej poprzecznej izotropii (TTI) rozpatrywanego dla przypadku, gdy oś symetrii leży w płaszczyźnie akwizycji pomiaru w kierunku „pod upad" i „z upadem" oraz w przypadku, gdy oś symetrii jest prostopadła do kierunku rozciągłości laminowanego ośrodka. Dla małych (do 5°) i dużych (powyżej 85°) kątów upadu przedstawiono aproksymacyjne formuły w formie explicite, natomiast w zakresie 5°-85° kątów upadu zastosowano numeryczną procedurę rozwiązywania równania wielomianowego czwartego stopnia dla określenia pionowej liczby falowej w funkcji poziomej liczby falowej, prędkości, parametrów anizotropii i kąta nachylenia laminowanego ośrodka. Test migracji (prestack) przeprowadzony w ośrodku VTI na silnie niejednorodnym modelu anizotropowym Marmousi potwierdził wysoką zdolność algorytmu migracji do odwzorowywania skomplikowanego modelu strukturalno-prędkościowego, Testy migracji zero-offset wykonane zostały na modelach kompozycyjnych łączących strukturalno-geometryczną formę antykliny z modelami poprzecznie izotropowymi: TTI, HTI, VTI. Sekcje czasowe zero-offset dla tych modeli opracowano oryginalną metodą jednostronnego równania falowego z zastosowaniem metody pseudospektralnej. Relacje dla równań falowych uzyskano z dyspersyjnego równania dla modelu TTI, definiując częstości własne dla poszczególnych typów ośrodka. Testy zero-offsetowych odwzorowań migracji wykazały satysfakcjonującą poprawność działania algorytmów i programów anizotropowej migracji.
Based on the conception of MG(F-K) "isotropic" migration (A. Kostecki, A. Półchłopek) were formulated the algorithms for back propagation wave in domain wavenumber (K) — frequency (F) in anisotropic media: TTI (Tilted Transverse Isotropy), VTI (Vertical Transverse Isotropy), HTI (Horizontal Transverse Isotropy). Vertical wavenumber kz for these types media were derived from dispersion relation for TTI considered for this case when axis of symmetric lay in a plane of acquisition in direction "up dip" and "down dip" and in this case when axis symmetric is perpendicular the direction of the strike. For small angles (to 5°) and large angles (greater then 85°)' of inclination were presented aproximation formulas in explicite form, however for range 5°-85° angles used numerical soubroutine for solution of polinomial equation of fourth degree as function of horizontal wavenumber kz, velocity, parameters of anizotropy and angle of dipping. Prestack migration was tested on strongly inhomogeneous vertical transverse isotropy (VTI) Marmousi model. Obtained results confirmed the ability this method to proper map- ping media with complicated structures. For testing the zero offset migration the composition models i.e. anticlinal structure and TI (Transverse Isotropy) were used. The zero-offset time sections for TTI, HTI and VTI models were described by one-way equation wave with pseudospectral method. Relations for pseudoacoustic equations were obtained from eigenvalues of dispersion relations i.e. time frequency for TTI, HTI and VTI models of anisotropy. Experiments on synthetic wavefield have shown the proper imaging of assumed media.
Czasopismo
Rocznik
Tom
Strony
1--134
Opis fizyczny
Bibliogr. 91 poz., wykr.
Twórcy
Bibliografia
- [1] Alkhalifah T., 1998: Acoustic approximation for processing in transversely isotropic media. Geophysics, vol. 63, no. 2, s. 623-631.
- [2] Alkhalifah T., 2000: An acoustic wave equation for anisotropic media. Geophysics, vol. 65, no. 4, s. 1239-1250.
- [3] Alkhalifah T., 2002: Traveltime computation with the linearized eikonal equation for anisotropic media. Geophysical Prospecting, vol. 50, s. 373-382.
- [4] Alkhalifah T., Tsvankin I., 1995: Velocity analysis' for transversely isotropic media. Geophysics, vol. 60, s. 1550-1566.
- [5] Anderson D. L., 1961: Elastic wave propagation in layered anisotropic media. J. Geophys. Res., vol. 66, issue 9, s. 2953-2963.
- [6] Auld B., 1990: Acoustic fields and waves in solids. Krieger Publishing Company, vol. 1.
- [7] Bakker P. M., 2009: A stable one-way wave propagator for VTI media. Geophysics, no. 5, WB3—WB17.
- [8] Bakulin A., Grechka V., Tsvankin I., 2000: Estimation of fracture parameters from reflection seismic data. Part I, II and III. Geophysics, vol. 65, s. 1785-1830.
- [9] Bale R., 2007: Phase shift migration and the anisotropic acoustic wave equation. [W:] Proc. 69th Conf. EAGE, Incorporating SPE EUROPEC, London, Extend. Abstr. C021.
- [10] Banik N. C., 1984: Velocity anisotropy of shales and depth estimation in the North Sea basin. Geophysics, vol. 49, no. 9, s. 1411-1419.
- [11] Bonsal R., Sen M. K., 2008: Finite-difference modelling of S-wave splitting in anisotropic media. Geophysical Prospecting, vol. 56, s. 293-312.
- [12] Boore D., 1972: Finite difference methods for seismic wave propagation in heterogeneous materials. [W:] Methods in Computational Physics, vol. 11, Academic Press Inc.
- [13] Booth D., Crampin S., 1983: The anisotropic reflectivity method. Theory Geophyscial Journal of the Royal Astronomical Society, vol. 72, s. 755-766.
- [14] Bube K., Nemeth T., Stefani J., Ergas R., Liu W., Nihei K., Zhang L., 2012a: On the instability in second-order systems for acoustic VTI and TTI media. Geophysics, vol. 77, no. 5, s. T171— 186.
- [15] Bube K., Nemeth T., Stefani J., Liu W., Nihei K., Ergas R., Zhang L., 2012b: First-order systems for elastic and acoustic variable-tilt TI media. Geophysics, vol. 77, No. 5, s. T157— T170.
- [16] Carcione I., Kosloff D., Kosloff R., 1998: Wave propagation simulation in an elastic anisotropic (transversely isotropic) solid. Journal of Mechanics and Applied Mathematics, vol. 41, s. 319-345.
- [17] Cerveny V., 1989: Ray tracing in factorized anisotropic inhomogeneous media. Geophysical Journal International, vol. 99, s. 91-100.
- [18] Cerveny V., 2001: Seismic ray theory. Cambridge University Press.
- [19] Cerveny V., Molotkov I. A., Psencik I., 1977: Ray method in seismology. Univerzita Karlova, Praha.
- [20] Chapman C.: Fundamentals of seismic wave propagation. Cambridge University Press.
- [21] Crampin S., 1985: Evaluation of anisotropy by shear-wave splitting. Geophysics, vol. 50, s. 142-152.
- [22] Daley P., Hron F., 1977: Reflection and transmission coefficients for transversely isotropic solids. Bull. Seis. Soc. Am., vol. 67, s. 661-675.
- [23] Danek T., Leśniak A., Pięta A., 2010: Numerical modeling of seismic wave propagating in selected anisotropic media. Studia, Rozprawy, Monografie Nr 162, Instytut Gosp. Surowcami Mineralnymi i Energią PAN.
- [24] Du X., Fletcher R., Fowler P. J., 2008: A new pseudo-acoustic wave equation for TI media. 70th Annual International Conference and Exhibition, EAGE, Extended Abstracts, H033.
- [25] Duveneck E., Bakker P.M., 2011: Stable P-wave modeling for reverse time migration in tilted media. Geophysics, vol. 76, no. 2, s. 565-575, doi: 10.1190/1.3533964.
- [26] Faria E., Stoffa P 1994: Traveltime computation in transversely isotropic media. Geophysics, vol. 59, s. 272-281.
- [27] Fletcher R., Du X., Fowler P. J., 2009: Reverse time migration in tilted transversely isotropic (TTI) media. Geophysics 2009, vol. 74, no. 6, s. WCA179—WCA187, doi: 101190/1.3269902.
- [28] Fornberg B., 1987: The pseudospectral method. Comparisons with finite differencies for the elastic wave equation. Geophysics, vol. 52, s. 483-501.
- [29] Gazdag I., 1978: Wave equation migration with the phase-shift method. Geophysics, vol. 43, no. 7, s. 1342-1351.
- [30] Gazdag I.,1981: Modeling of the acoustic wave equation with transform methods. Geophysics, vol. 46, s. 854-859.
- [31] Grechka V., Tsvankin I., 1998: 3D description of normal moveout in anisotropic inhomogeneous media. Geophysics, vol. 63, s. 1079-1092.
- [32] Grechka V., Zhang L., Rector III J. W., 2004: Shear waves in acoustic anisotropic media. Geophysics, vol. 69, s. 576-582.
- [33] Han Q., Wu R. S., 2005: A one-way dual-domain propagator for scalar qP-waves in VTI media. Geophysics, vol. 70, no. 2, s. D9—D17.
- [34] Helbig K., 1983: Elliptical anisotropy; its significance and meaning. Geophysics, vol. 48, s. 825-832.
- [35] Helbig K., 1984: Anisotropy and dispersion in periodically layered media. Geophysics, vol. 49; s. 364-373.
- [36] Helbig K., 1994: Foundations of elastic anisotropy for exploration seismics. Pergamon Press.
- [37] Hildebrand F. B., 1956: Introduction to Numerical Analysis. New York, McGraw-Hill Inc.
- [38] Isaac J. H., Lawton D. C., 1999: Image mispositioning due to dipping TI media. A physical seismic modeling study. Geophysics, vol. 64, no. 4, s. 1230-1238.
- [39] Jastram C., Tessmer E., 1994: Elastic modeling on a grid with vertically varying spacing. Geophysical Prospecting, vol. 42, s. 357-370.
- [40] Kelly K. R., Ward R., Treitel S., Alford R., 1976: Synthetic seismograms. A finite difference approach. Geophysics, vol. 41, s. 2-27.
- [41] Kendall R., Gray S., Xiaogui Miao, 2001: Anisotropic prestack depth migration for multicomponent data — methodology and examples. Extended Abstracts, 63th EAEG Conference.
- [42] Kitchenside P. W., 1991: Phase shift-based migration for transverse isotropy. [W:] Proc. 61st SEG Annual Meeting, 10-14 November, Houston, USA, Expand. Abstr. s. 993-998.
- [43] Kosloff D., Filho A. Q., Tessmer E., Behle A., 1989: Numerical solution of the acoustic and elastic wave equations by new rapid expansion method. Geophysical Prospecting, vol. 37, s. 983-994.
- [44] Kostecki A., 1994: Algorithm of prestack migration of wavefield. [W:] Proc. First Science- Tech. Conf. The Seismic Problems of the Interpretation, 26-28 October, Mogilany/Cracow, Poland (in Polish).
- [45] Kostecki A., 2010: Modele anizotropii w sejsmice prospekcyjnej. Konferencja GEOPETROL. Prace Naukowe INiG Nr 170.
- [46] Kostecki A., 2011: Tilted Transverse Isotropy. The Oil and Gas, nr 11, s. 769-776.
- [47] Kostecki A., Półchłopek A., 1998: Stable depth extrapolation of seismic wavefields by a Neumann series. Geophysics, vol. 63, no. 6, s. 2063-2071.
- [48] Kostecki A., Półchłopek A., 2003: Prestack depth migration using converted waves. Acta Geophys. Pol., vol. 53, nr 1, s. 73-84.
- [49] Kostecki A., Półchłopek A., 2008: Odwzorowanie silnie niejednorodnego ośrodka sejsmogeologicznego z zastosowaniem inwersji migracyjnej fal przemiennych z jednoczesnym określeniem prędkości interwalowych. Prace Instytutu Nafty i Gazu Nr 151.
- [50] Kostecki A., Półchłopek A., 2013: Generalized migration in frequency-wavenumber domain MG(F-K) in anizotropic media. Acta Geophysica, vol. 61, no. 3, s. 624-637.
- [51] Kumar D., Sen M., Ferguson R., 2004: Traveltime calculation and prestack migration in tilted transversely isotropic media. Geophysics, vol. 69, s. 37-45.
- [52] Larner K., Cohen I., 1983: Migration error in transversely isotropic media with linear variation in depth. Geophysics, vol. 58, s. 1454-1467.
- [53] Le Rousseau J. H., 1997: Depth migration in heterogeneous transversely isotropic media with the phase-shift plus-interpolation method. 67th Annual International Meeting SEG, Expanded Abstracts, s. 1703-1706.
- [54] Le Rousseau J. H., de Hoop M. V., 2001: Scalar generalized-screen algorithms in transversely isotropic media with a vertical symmetry axis. Geophysics, vol. 66, no. 5, s. 1538-1550.
- [55] Leaney W. S., Sayers C. M., Miller D. E., 1999: Analysis of multiazimuthal VSP data for anisotropy and AVO. Geophysics, vol. 64, no. 4.
- [56] Levander A., 1988: Fourth-order finite-difference P-SV seismograms. Geophysics, vol. 53, no. 11.
- [57] Loewenthal D., Lu L., Robertson R., Sherwood J., 1976: The wave equation applied to migration. Geophysical Prospecting, vol. 24, no. 2, s. 380-399.
- [58] Marfurt K., 1984: Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics, vol. 49, s. 533-549.
- [59] Pestana R., Ursin B., Stoffa P., 2011: Separate P- and SV-wave equations for VTI media. 81 st Annual International Meeting SEG, Expanded Abstracts, 30, s. 163-167.
- [60] Podvin P., Lecomte I., 1991: Finite difference computation of traveltimes in very contrasted velocity models. A massively parallel approach and its associated tools. Geophysical Journal International, vol. 105, s. 272 284.
- [61] Postma G. M., 1955: Wave propagation in a stratified medium. Geophysics, vol. 20, no. 4.
- [62] Półchłopek A., 2010: Anizotropowa wersja modelu Marmousi do testowania procedur migracyjnych. Konferencja GEOPETROL. Prace Naukowe INiG Nr 170.
- [63] Reshef M., Roth M., 2006: VTI anisotropic corrections and effective parameter estimation after isotropic prestack depth migration. Geophysics, vol. 71, no. 3, s. D35—D43.
- [64] Ristow D., Ruhl T., 1994: Fourier finite-difference migration. Geophysics, vol. 59, no. 12, s. 1882-1893.
- [65] Ruger A., 2002: Reflection coefficients and azimuthal AVO analysis in anisotropic media. Geophysical Monograph Series No. 10, Society of Exploration Geophysicists.
- [66] Sarkar D., Tsvankin I., 2004: Migration velocity analysis in factorized VTI medium. Geophysics, vol. 69, s. 708-718.
- [67] Sayers C., 1995: Anisotropic velocity analysis. Geophysical Prospecting, vol. 43, s. 541-568.
- [68] Schoenberg M. A., de Hoop M., 2000: Approximate dispersion relations for qP—qSV-waves in transversely isotropic media. „Geophysics", vol. 65, no. 3, s. 919-933.
- [69] Schoenberg M. A., Sayers C., 1995: Seismic anisotropy of fractured rock. Geophysics, vol. 60, s. 204-211.
- [70] Sena A., 1991: Seismic traveltime equations for azimuthally anisotropic and isotropic media. Estimation of interval elastic. Geophysics, vol. 56, s. 2090-2101.
- [71] Shearer P., Chapman C., 1988: Ray tracing in anisotropic media with a linear gradient. Geoph. J. Inter., vol. 94, s. 575-580.
- [72] Środa P., 2006: Seismic anisotropy of the upper crust in southeastern Poland — effect of the compressional deformation at the EEC margin: Results of CELEBRATION 2000 seismic data inversion. Geophysical Reasearch Letters, vol. 33, issue 22, L22302.
- [73] Stunff L., Grechka V., Tsvankin Y., 2001: Depth-domain velocity analysis in VTI media using surface P-wave data: Is it feasible? Geophysics, vol. 66, s. 897-903.
- [74] Thomsen L., 1986: Weak elastic anisotropy. Geophysics, vol. 51, no. 10, s. 1954-1966.
- [75] Tsingas C., Wafidis A., Kanasewich E., 1990: Elastic wave propagation in transversely isotropic media using finite-differences. Geophysical Prospecting, vol. 38, s. 933-949.
- [76] Tsvankin I., Gaiser J., Grechka V., van der Baan M., Thomsen L., 2010: Seismic anisotropy in exploration and reservoir characterization: An overview. Geophysics, vol. 75, s. 75A15—75A29.
- [77] Tsvankin I., Thomsen L., 1994: Nonhyperbolic re,flection moveout in anisotropic media. Geophysics, vol. 59, s. 1290-1304.
- [78] Vavrycuk V., Psencik I., 1998: P-P wave reflection coefficients in weakly anisotropic elastic media. Geophysics, vol. 63, s. 2129 2140.
- [79] Vestrum R., Lawton D., Schmid R., 1999: Imaging structures below dipping TI media. Geophysics, no. 4, s. 1239-1246.
- [80] Virieux J., 1986: P-SV wave propagation in heterogeneous media: velocity-stress finite- difference method. Geophysics, vol. 51, s. 889-901.
- [81] Wang Z., 2002: Seismic anisotropy in sedimentary rocks. Part 1 and part 2. Geophysics, vol. 67, s. 1422-1440.
- [82] Winterstein D., 1990: Velocity anisotropy terminology for geophysicists. Geophysics, vol. 55, s. 1070-1088.
- [83] Yan L., Lines L., Lawton D., 2004: Influence of seismic anisotropy on prestack depth migration. The Leading Edge, January.
- [84] Yang D., Liu E., Zhang Z., Teng J., 2002: Finite-difference modeling in two-dimensional anisotropic media using a flux-corrected technique. Geophysical Journal International, vol. 148, s. 320-328.
- [85] Zalewska J., Buniak A., Gąsior I., Cebulski D., Wawrzyniak K., 2008: Metodyka oceny anizotropii skal na podstawie badań laboratoryjnych, danych z profilowań geofizycznych i pomiarów sejsmicznych. Prace INiG Nr 149.
- [86] Zhan G., Pestana R. C., Stoffa P. L., 2012: Decoupled equations for reverse time migration in tilted transversely isotropic media. Geophysics, vol. 77, no. 2, s. T37—T45, doi: 101190GE02011-175.1.
- [87] Zhang H., Zhang Y., 2008: Reverse time migration in 3D heterogeneous TTI media. 78th Annual International Meeting SEG, Expanded Abstracts, 27, s. 2196-2200.
- [88] Zhang L., Rector III J. W., Hoversten M., 2005: Finite-difference modelling of wave propagation in acoustic tilted TI media. Geophysical Prospecting, vol. 53, s. 843-852.
- [89] Zhou H., Zhang G., Bloor R., 2006a: An anisotropic acoustic wave equation for VTI media. 68th Annual International Conference EAGE, Extended Abstracts.
- [90] Zhou H., Zhang G., Bloor R., 2006b: An anisotropic acoustic wave equation for modelling and migration in 2D TTI media. 76th Annual International Meeting SEG, Expanded Abstracts 25, 194-198.
- [91] Zhu J., Dorman J., 2000: Two-dimensional, three-component wave propagation in a transversely isotropic medium with arbitrary-orientation finite element modeling. Geophysics, vol. 65, s. 934-942.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f04d315-4708-4589-a2ea-124cfa5b9f75