PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Fabrication of Agar-Silica Aerogel Nanocomposite Films

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, agar-based nanocomposite films containing ultra-porous silica aerogel particles were fabricated by gel casting using an aqueous agar/silica aerogel slurry. The silica aerogel particles did not show significant agglomeration and were homogeneously distributed in the agar matrix. Transmission electron microscopy observations demonstrated that the silica aerogel particles had a mesoporous microstructure and their pores were not incorporated into the agar polymer molecules. The thermal conductivities of the agar and agar/5wt.% silica aerogel nanocomposite films were 0.36 and 0.20 W·m-1·K-1, respectively. The transmittance of the agar films did not decrease upon the addition of silica aerogel particles into them. This can be attributed to the anti-reflection effect of silica aerogel particles.
Twórcy
autor
  • INHA University, Department of Materials Science and Engineering, 100 Inha-ro, Nam-gu Incheon 22212, Korea
autor
  • INHA University, Department of Materials Science and Engineering, 100 Inha-ro, Nam-gu Incheon 22212, Korea
  • INHA University, Department of Materials Science and Engineering, 100 Inha-ro, Nam-gu Incheon 22212, Korea
autor
  • INHA University, Department of Materials Science and Engineering, 100 Inha-ro, Nam-gu Incheon 22212, Korea
Bibliografia
  • [1] R. Baetens, B. P. Jelle, A. Gustavsen, Energy and Buildings 43, 761-769 (2011).
  • [2] V. G. Parale, K. Y. Lee, H. H . Park, J. Korean Ceram. Soc. 54, 184-199 (2017).
  • [3] M. Reim, W. Körner, J. Manara, S. Korder, M. Arduini-Schuster, H. P. Ebert, J. Fricke, Solar Energy 79, 131-138 (2005).
  • [4] Y. Huang, J.lei. Niu, Energy 83, 316-325 (2015).
  • [5] J. C. H. Wong, H. Kaymak, P. Tingaut, S. Brunner, M. M. Koebel, Microporous and Mesoporous Mater. 217, 150-158 (2015).
  • [6] A. Fidalgo, J. P. S. Farinha, J. M. G. Martinho, M. E. Rosa, L. M. Ilharco, Chem. Mater. 19, 2603-2609 (2007).
  • [7] H. Maleki, L. Durães, A. Portugal, J. Non-Crystalline Solid 385, 55-74 (2014).
  • [8] C. H. Lee, E. J. Yun, H. T. Kim, I. G. Choi, K. H. Kim, Process Biochem. 50, 1629-1633 (2015).
  • [9] M. Lahaye, C. Rochas, Hydrobiologia 221, 137-148 (1991).
  • [10] M. Zhang, Z. Che, J. Chen, H. Zhao, L. Yang, Z. Zhong, J. Lu, J. Chem. Eng. Data 56, 859-864 (2011).
  • [11] K. J. Lee, Y. H. Kim, J. K. Lee, H. Hwang, Chemistry Select 3, 1257-1261 (2018).
  • [12] K. J. Lee, Y. J. Choe, Y. H. Kim, J. K. Lee, H. Hwang, Ceram. Inter. 44, 2204-2208 (2018).
  • [13] S. Y. Kim, Y. J. Noh, J. Lim, N. You, Macromolecular Research 22, 108-111 (2014).
  • [14] H. Chen, V. V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Progress in Polymer Sci. 59, 14-85 (2016).
  • [15] L. Brigo, E. Scomparin, M. Galuppo, G. Capurso, M. G. Ferlin, V. Bello, N. Realdon, G. Brusatin, M. Morpurgo, Mater. Sci. Eng.: C59, 585-593 (2016).
  • [16] S. K. Seo, J. W. Park, H. K. Cho, Y. S. Chu, J. Korean Ceram. Soc. 55, 61-66 (2018).
  • [17] G. S. Kim, S.-H. Hyun, J. Non-Crystalline Solids 320, 125-132 (2003).
  • [18] J. S. Lee, S.-C. Moon, K.-J. Noh, S.-E. Lee, J. Korean Ceram. Soc. 54, 429-437 (2017)
Uwagi
EN
1. This study was supported by an Inha University Research Grant. This work was also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry&Energy (MOTIE) of the Republic of Korea (No. 20194030202340).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f046995-f05d-4c30-8ede-955e2ceff093
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.