PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selection of optical to mography parameters for gas bubble shape analysis

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An optical tomograph in which a tested object is illuminated from five directions has been presented in the paper. The measurements of luminous intensity after changing into discrete signals (0 or 1) in the detectors equipped with 64 optical sensors were subjected to reconstruction by means of the matrix algorithm. Detailed description of the measuring sensor, as well as the principles of operation of the electronic system, has been given in the paper. Optical phenomena occurring at the phase boundary while transmitted through the sensor wall and phenomena inside the measuring space have also been taken into account. The method of the sensor calibration has been analysed and a way of technical solution of the problem under consideration has been discussed. The elaborated method has been tested using objects of the known shape and dimensions. It was found that reconstruction of the shapes of moving bubbles and determination of their main parameters is also possible with a reasonable accuracy.
Rocznik
Strony
19--33
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
  • Technical University of Opole, Department of Thermal Engineering and Industrial Facilities, ul. Mikołajczyka 5, 45-233 Opole, Poland
Bibliografia
  • 1. Beck M.S. and Pląskowski A., 1987. Cross correlation flowmeters–their design and application. Ed. Adam Hilger, Bristol, UK.
  • 2. Cao N, Nehorai A, Jacobs M., 2007. Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm. Opt. Express, 15, 13695–13708. DOI:10.1364/OE.15.013695.
  • 3. Dehghani H., Srinivasan S., Pogue B.W, Gibson A., 2009. Numerical modelling and image reconstruction in diffuse optical tomography. Philos. Trans. R. Soc. London, Ser. A, 367, 3073–3093. DOI:10.1098/rsta.2009.0090.
  • 4. Dugdale P., Green R. G., Hartley A. J., Jackson R. G., and Landauro J., 1993. Characterisation of single bubbles by an optical tomographic system. Conference of Workshop on Proces Tomography, Karlsruhe.
  • 5. Kawaguchi T., Akasaka Y., Maeda M., 2002. Size measurements of droplets and bubbles by advanced interferometric laser imaging technique. Meas. Sci. Technol., 13, 308–315. DOI: 10.1088/0957-0233/13/3/312.
  • 6. Kihm K.D., Ko H.S., Lyons D.P., 1998. Tomographic identification of gas bubbles in two-phase flows with the combined use of the algebraic reconstruction technique and the genetic algorithm. Opt. Lett., 23, 658–660. DOI: 10.1364/OL.23.000658.
  • 7. Leifer I., de Leeuw G., Cohen L.H., 2003. Optical measurement of bubbles: system design and application. J. Atmos. Oceanic Technol., 20, no. 9, 1317–1332. DOI: 10.1175/1520-0426(2003)020<1317:OMOBSD>2.0.CO;2
  • 8. Magnaudet, J., Eames, I., 2000. The motion of high-Reynolds-number bubbles in inhomo-geneous flows. Annu.Rev. Fluid Mech., 32, 659–708. DOI: 10.1146/annurev.fluid.32.1.659.
  • 9. Mayinger F., Feldmann O., 2001. Optical measurements - Techniques and applications. 2nd Edition, Heidelberg, Springer. Prosperetti, A., 2004. Bubbles. Phys. Fluids, 16, 1852–1865. DOI: 10.1063/1.1695308.
  • 10. Prosperetti, A., 2004. Bubbles. Phys. Fluids, 16, 1852–1865. DOI: 10.1063/1.1695308.
  • 11. Reinecke N., and Mewes D., 1996. Recent developments and industrial/research applications capacitance tomography. Meas. Sci. Technol., 7, 233–246. DOI: 10.1088/0957-0233/7/3/004.
  • 12. Rząsa M.R., 2009. The measuring method for tests of horizontal two-phase gas–liquid flows, using optical and capacitance tomography. Nucl. Eng. Des., 239, 699–707. DOI: 10.1016/j.nucengdes.2008.12.020.
  • 13. Rząsa M.R., Grudzien K., Przywarski R., Romanowski A., Wajman R., 2007. The discrete optical tomograph including five projections. 5th World Congress on Industrial Process Tomography, Bergen, Norway, 3-6 September 2007.
  • 14. Rząsa M.R., Pląskowski A., 2003. Application of optical tomography for measurements of aeration parameters in large water tanks.Meas. Sci. Technol., 14, 199–204. DOI: 10.1088/0957-0233/14/2/307.
  • 15. Tarvainen T., Vauhkonen M., Arridge S.R., 2008. Gauss–Newton reconstruction method for optical tomography using the finite element solution of the radiative transfer equation. J. Quant. Spectrosc. Radiat. Transfer, 109, 2767–2778. DOI: 10.1016/j.jqsrt.2008.08.006.
  • 16. Yonguk R., Kuang-An C., Ho-Joon L., 2005. Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater. Meas. Sci. Technol., 16, 1945–1953. DOI: 10.1088/0957-0233/16/10/009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f023f9f-5137-4265-9ffe-8c57ed726314
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.