PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Machine learning algorithms and geographic information system techniques to predict land suitability maps for wheat cultivation in the Central Anatolia Region

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Maintaining food security through increased agricultural production is a major concern for decision-makers, especially in areas with arid and semi-arid climatic conditions and limited natural resources. Land suitability prediction for cultivating strategic crops, including wheat, has emerged as a crucial subject for academics, decision-makers, and economists to ensure the sustainability of natural resources. This paper aims to use three soil morphological parameters, three soil physical parameters, four soil chemical parameters, and a long-term remote sensing index as input factors to produce land suitability maps for wheat cultivation based on five machine learning algorithms (MLAs): ANN, KNN, RF, SVM, and XgbTree, in the Gozlu agricultural enterprise, which is located in a semi-arid region of the Central Anatolian Plateau. To achieve this target, an inventory of 238 appropriateness points for cultivated wheat has been executed over five years, from 2019 to 2023. The outcomes revealed that the soil texture and soli available water capacity parameters were the most influential in land suitability prediction. The best performance among the MLAs was achieved by the XgbTree algorithm, which had an accuracy of 0.98 and a kappa coefficient of 0.81. Additionally, the area under the curve (AUC) was 0.90 according the receiver operating characteristics (ROC) curve approach. The results of the study demonstrated an excellent ability of the MLAs to predict land suitability for wheat cultivation in semi-arid climate conditions. This approach can play a significant role in ensuring food security and serves as an important tool for decision-makers in sustainable development. However, we propose that the approach should be examined in comparable climatic conditions with diverse crops to ensure it is a viable solution with widely cases.
Rocznik
Strony
373--387
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
  • Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Turkey
  • Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Turkey
Bibliografia
  • 1. Abakay, O., Kılıç, M., Günal, H., & Kılıç, O. M. (2024). Tree-based algorithms for spatial modeling of soil particle distribution in arid and semi-arid region. Environmental monitoring and assessment, 196(3), 264. https://doi.org/ https://doi.org/10.1007/s10661-024-12431-6
  • 2. Abdikan, S., Sekertekin, A., Madenoglu, S., Ozcan, H., Peker, M., Pinar, M. O., Koc, A., Akgul, S., Secmen, H., Kececi, M., Tuncay, T., & Balik Sanli, F. (2023). Surface soil moisture estimation from multi-frequency SAR images using ANN and experimental data on a semi-arid environment region in Konya, Turkey. Soil and Tillage Research, 228, 105646. https://doi.org/https://doi.org/10.1016/j.still.2023.105646
  • 3. Akumu, C., Johnson, J., Etheridge, D., Uhlig, P., Woods, M., Pitt, D., & McMurray, S. (2015). GIS-fuzzy logic based approach in modeling soil texture: Using parts of the Clay Belt and Hornepayne region in Ontario Canada as a case study. Geoderma, 239, 13–24. https://doi.org/https://doi.org/10.1016/j. geoderma.2014.09.021
  • 4. Altay, F., Bağcı, S. A., Yazar, S., Belen, S., Öztürk, İ., Küçüközdemir, Ü., & Zencirci, N. (2024). Winter wheat research in Türkiye. In N. Zencirci, F. Altay, F. S. Baloch, M. A. Nadeem, & N. Ludidi (Eds.), Advances in Wheat Breeding: Towards Climate Resilience and Nutrient Security (23–101). Springer Nature Singapore. https://doi.org/https://doi.org/10.1007/978-981-99-9478-6_2
  • 5. Ashoka, D., BV, A. P. (2022). IMLAPC: interfused machine learning approach for prediction of crops. Revue d’Intelligence Artificielle, 36(1). https://doi.org/https://doi.org/10.18280/ria.360120
  • 6. Bedaiwy, M. N. A. (2012). A simplified approach for determining the hydrometer’s dynamic settling depth in particle-size analysis. Catena, 97, 95–103. https://doi.org/https://doi.org/10.1016/j. catena.2012.05.010
  • 7. Benabdelouahab, T., Lebrini, Y., Boudhar, A., Hadria, R., Htitiou, A., Lionboui, H. (2021). Monitoring spatial variability and trends of wheat grain yield over the main cereal regions in Morocco: a remote-based tool for planning and adjusting policies. Geocarto International, 36(20), 2303–2322. https://doi.org/https://doi.org/10.1080/10106049.2019.1695960
  • 8. Blake, G., Hartge, K. (1986). Particle density. Methods of soil analysis: part 1 physical and mineralogical methods, 5, 377–382. https://doi.org/https://doi.org/10.2136/sssabookser5.1.2ed.c14
  • 9. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32. https://doi.org/ https://doi.org/10.1023/A:1010933404324
  • 10. Canadell, J., Jackson, R.B., Ehleringer, J., Mooney, H.A., Sala, O.E., Schulze, E.-D. (1996). Maximum rooting depth of vegetation types at the global scale. Oecologia, 108, 583–595. https://doi.org/https://doi.org/10.1007/BF00329030
  • 11. Cheshire, L., & Woods, M. (2013). Globally engaged farmers as transnational actors: Navigating the landscape of agri-food globalization. Geoforum, 44, 232–242. https://doi.org/https://doi.org/10.1016/j.geoforum.2012.09.003
  • 12. Cousin, I., Nicoullaud, B., Coutadeur, C. (2003). Influence of rock fragments on the water retention and water percolation in a calcareous soil. Catena, 53(2), 97–114. https://doi.org/https://doi.org/10.1016/S0341-8162(03)00037-7
  • 13. Dedeoğlu, M., & Dengiz, O. (2019). Generating of land suitability index for wheat with hybrid system aproach using AHP and GIS. Computers and Electronics in Agriculture, 167, 105062. https://doi.org/ https://doi.org/10.1016/j.compag.2019.105062
  • 14. Diaz-Gonzalez, F.A., Vuelvas, J., Correa, C.A., Vallejo, V.E., Patino, D. (2022). Machine learning and remote sensing techniques applied to estimate soil indicators – Review. Ecological Indicators, 135, 108517. https://doi.org/https://doi.org/10.1016/j. ecolind.2021.108517
  • 15. El Baroudy, A. (2016). Mapping and evaluating land suitability using a GIS-based model. Catena, 140, 96–104. https://doi.org/https://doi.org/10.1016/j.catena.2015.12.010
  • 16. Eyo, E., Abbey, S. (2022). Multiclass stand-alone and ensemble machine learning algorithms utilised to classify soils based on their physico-chemical characteristics. Journal of Rock Mechanics and Geotechnical Engineering, 14(2), 603–615. https://doi.org/https://doi.org/10.1016/j.jrmge.2021.08.011
  • 17. Ganesan, M., Andavar, S., Raj, R.S.P. (2021). Prediction of land suitability for crop cultivation using classification techniques. Brazilian Archives of Biology and Technology, 64, e21200483. https://doi.org/https://doi.org/10.1590/1678-4324-2021200483
  • 18. Geerts, S., Raes, D., Garcia, M., Del Castillo, C., Buytaert, W. (2006). Agro-climatic suitability mapping for crop production in the Bolivian Altiplano: A case study for quinoa. Agricultural and Forest Meteorology, 139(3–4), 399–412. https://doi.org/ https://doi.org/10.1016/j.agrformet.2006.08.018
  • 19. Habibie, M.I., Noguchi, R., Shusuke, M., Ahamed, T. (2021). Land suitability analysis for maize production in Indonesia using satellite remote sensing and GIS-based multicriteria decision support system. GeoJournal, 86(2), 777–807. https://doi.org/ https://doi.org/10.1007/s10708-019-10091-5
  • 20. Hamza, M., Anderson, W.K. (2005). Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil and Tillage Research, 82(2), 121–145. https://doi.org/ https://doi.org/10.1016/j.still.2004.08.009
  • 21. Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M.N., Geng, X., Bauer- Marschallinger, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. Plos one, 12(2), e0169748. https://doi.org/https://doi.org/10.1371/journal.pone.0169748
  • 22. Huang, Z., Liu, Y., Tian, F.-P., Wu, G.-L. (2020). Soil water availability threshold indicator was determined by using plant physiological responses under drought conditions. Ecological Indicators, 118, 106740. https://doi.org/ https://doi.org/10.1016/j.ecolind.2020.106740
  • 23. Ismaili, M., Krimissa, S., Namous, M., Htitiou, A., Abdelrahman, K., Fnais, M.S., Lhissou, R., Eloudi, H., Faouzi, E., Benabdelouahab, T. (2023). Assessment of Soil Suitability Using Machine Learning in Arid and Semi-Arid Regions. Agronomy, 13(1), 165. https://doi.org/https://doi.org/10.3390/agronomy13010165
  • 24. Jackson, M.L. (2005). Soil chemical analysis: advanced course. UW-Madison Libraries parallel press.
  • 25. Jayaraman, V., Sridevi, S., Monica, K., Lakshminarayanan, A. R. (2021). Predicting the Soil Suitability using Machine Learning Techniques. 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON), https://doi.org/https://doi.org/10.1109/CENTCON52345.2021.9688283
  • 26. Jones, J. (2018). Soil analysis handbook of reference methods. CRC press. https://doi.org/ https://doi.org/10.1201/9780203739433
  • 27. Jonsson, P., Eklundh, L. (2002). Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1824–1832. https://doi.org/ https://doi.org/10.1109/TGRS.2002.802519
  • 28. Junior, E.C., Gonçalves Jr, A.C., Seidel, E.P., Ziemer, G.L., Zimmermann, J., Oliveira, V.H.D. d., Schwantes, D., Zeni, C.D. (2020). Effects of liming on soil physical attributes: a review. Journal of Agricultural Science, 12(10), 278. https://doi.org/ https://doi.org/10.5539/jas.v12n10p278
  • 29. Kang, E., Li, Y., Zhang, X., Yan, Z., Wu, H., Li, M., Yan, L., Zhang, K., Wang, J., Kang, X. (2021). Soil pH and nutrients shape the vertical distribution of microbial communities in an alpine wetland. Science of the total environment, 774, 145780. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.145780
  • 30. Kim, K. (2021). Normalized class coherence change-based kNN for classification of imbalanced data. Pattern Recognition, 120, 108126. https://doi.org/https://doi.org/10.1016/j.patcog.2021.108126
  • 31. Klute, A. (1986). Water retention: laboratory methods. Methods of soil analysis: part 1 physical and mineralogical methods, 5, 635–662. https://doi.org/ https://doi.org/10.2136/sssabookser5.1.2ed.c26
  • 32. Li, Z., Fan, Z., Shen, S. (2018). Urban green space suitability evaluation based on the AHP-CV combined weight method: A case study of Fuping county, China. Sustainability, 10(8), 2656. https://doi.org/ https://doi.org/10.3390/su10082656
  • 33. Ljubičić, N., Kostić, M., Oskar, M., Panić, M., Brdar, S., Lugonja, P., Knežević, M., Minić, V., Ivošević, B., Jevtić, R. (2018). Estimation of aboveground biomass and grain yield of winter wheat using NDVI measurements. Book of Proceedings, 9th International Scientific Agriculture Symposium Agrosym 2018, 4–7 October 2018, Jahorina, http:// fiver.ifvcns.rs/handle/123456789/4083
  • 34. Luo, G., Li, L., Friman, V.-P., Guo, J., Guo, S., Shen, Q., Ling, N. (2018). Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biology and Biochemistry, 124, 105–115. https://doi.org/ https://doi.org/10.1016/j.soilbio.2018.06.002
  • 35. Mangan, P., Pandi, D., Haq, M.A., Sinha, A., Nagarajan, R., Dasani, T., Keshta, I., Alshehri, M. (2022). Analytic hierarchy process based land suitability for organic farming in the arid region. Sustainability, 14(8), 4542. https://doi.org/ https://doi.org/10.3390/ su14084542
  • 36. Mbugua, J.K., Suksa-ngiam, W. (2018). Predicting suitable areas for growing cassava using remote sensing and machine learning techniques: A study in Nakhon-Phanom Thailand. Issues in Informing Science and Information Technology, 15, 43–56. https://doi.org/ https://doi.org/10.28945/4024
  • 37. McBratney, A.B., Mendonça Santos, M.L., Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1), 3–52. https://doi.org/ https://doi.org/10.1016/S0016-7061(03)00223-4
  • 38. Møller, A.B., Mulder, V.L., Heuvelink, G.B., Jacobsen, N.M., Greve, M.H. (2021). Can we use machine learning for agricultural land suitability assessment? Agronomy, 11(4), 703. https://doi.org/ https://doi.org/10.3390/agronomy11040703
  • 39. Namous, M., Hssaisoune, M., Pradhan, B., Lee, C.- W., Alamri, A., Elaloui, A., Edahbi, M., Krimissa, S., Eloudi, H., Ouayah, M., Elhimer, H., & Tagma, T. (2021). Spatial prediction of groundwater potentiality in large semi-arid and karstic mountainous region using machine learning models. Water, 13(16). https://doi.org/ https://doi.org/10.3390/w13162273
  • 40. Oertli, J. (1990). Limitations to the diagnostic information obtained from soil analyses. Fertilizer research, 26, 189–196. https://doi.org/ https://doi.org/10.1007/BF01048756
  • 41. Özen, D., Kocakaya, A., Ozbeyaz, C. (2021). Estimating relationship between live body weight and type traits at weaning and six months of age in Bafra lambs using canonical correlation analysis. Journal of Animal and Plant Sciences-Japs, 31(2). https://doi.org/http://doi.org/10.36899/japs.2021.2.0226
  • 42. Öztürk, M.M. (2017). Which type of metrics are useful to deal with class imbalance in software defect prediction? Information and Software Technology, 92, 17–29. https://doi.org/ https://doi.org/10.1016/j.infsof.2017.07.004
  • 43. Pereira, P., Brevik, E.C., Muñoz-Rojas, M., Miller, B.A., Smetanova, A., Depellegrin, D., Misiune, I., Novara, A., Cerdà, A. (2017). Chapter 2 - Soil Mapping and Processes Modeling for Sustainable Land Management. In P. Pereira, E. C. Brevik, M. Muñoz- Rojas, & B. A. Miller (Eds.), Soil Mapping and Process Modeling for Sustainable Land Use Management (29–60). Elsevier. https://doi.org/ https://doi.org/10.1016/B978-0-12-805200-6.00002-5
  • 44. Poesen, J., Nachtergaele, J., Verstraeten, G., Valentin, C. (2003). Gully erosion and environmental change: importance and research needs. Catena, 50(2–4), 91–133. https://doi.org/ https://doi.org/10.1016/S0341-8162(02)00143-1
  • 45. Purnamasari, R.A., Ahamed, T., Noguchi, R. (2019). Land suitability assessment for cassava production in Indonesia using GIS, remote sensing and multi-criteria analysis. Asia-Pacific Journal of Regional Science, 3, 1–32. https://doi.org/https://doi.org/10.1007/s41685-018-0079-z
  • 46. Qu, C., Li, P., Zhang, C. (2021). A spectral index for winter wheat mapping using multi-temporal Landsat NDVI data of key growth stages. ISPRS journal of photogrammetry and remote sensing, 175, 431–447. https://doi.org/ https://doi.org/10.1016/j.isprsjprs.2021.03.015
  • 47. Radočaj, D., Jurišić, M., Gašparović, M., Plaščak, I., Antonić, O. (2021). Cropland suitability assessment using satellite-based biophysical vegetation properties and machine learning. Agronomy, 11(8), 1620. https://doi.org/ https://doi.org/10.3390/agronomy11081620
  • 48. Raheem, A.M., Naser, I.J., Ibrahim, M.O., Omar, N.Q. (2023). Inverse distance weighted (IDW) and kriging approaches integrated with linear single and multi-regression models to assess particular physico-consolidation soil properties for Kirkuk city. Modeling Earth Systems and Environment, 9(4), 3999–4021. https://doi.org/ https://doi.org/10.1007/s40808-023-01730-5
  • 49. Romano, G., Dal Sasso, P., Trisorio Liuzzi, G., Gentile, F. (2015). Multi-criteria decision analysis for land suitability mapping in a rural area of Southern Italy. Land use policy, 48, 131–143. https://doi.org/https://doi.org/10.1016/j.landusepol.2015.05.013
  • 50. Romeijn, H., Faggian, R., Diogo, V., Sposito, V. (2016). Evaluation of deterministic and complex analytical hierarchy process methods for agricultural land suitability analysis in a changing climate. ISPRS International Journal of Geo-Information, 5(6). https://doi.org/https://doi.org/10.3390/ijgi5060099
  • 51. Rossiter, D.G. (1996). A theoretical framework for land evaluation. Geoderma, 72(3– 4), 165–190. https://doi.org/https://doi.org/10.1016/0016-7061(96)00031-6
  • 52. Sarkar, D., Saha, S., Maitra, M., Mondal, P. (2021). Site suitability for Aromatic Rice cultivation by integrating Geo-spatial and Machine learning algorithms in Kaliyaganj C.D. block, India. Artificial Intelligence in Geosciences, 2, 179–191. https://doi.org/https://doi.org/10.1016/j.aiig.2022.03.001
  • 53. Shrivastava, P., Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi journal of biological sciences, 22(2), 123–131. https://doi.org/https://doi.org/10.1016/j.sjbs.2014.12.001
  • 54. Talukdar, S., Naikoo, M.W., Mallick, J., Praveen, B., Sharma, P., Islam, A.R.M.T., Pal, S., Rahman, A. (2022). Coupling geographic information system integrated fuzzy logic-analytical hierarchy process with global and machine learning based sensitivity analysis for agricultural suitability mapping. Agricultural systems, 196, 103343. https://doi.org/ https://doi.org/10.1016/j.agsy.2021.103343
  • 55. Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business media.
  • 56. Velmurugan, A., Swarnam, T.P., Ambast, S.K., Kumar, N. (2016). Managing waterlogging and soil salinity with a permanent raised bed and furrow system in coastal lowlands of humid tropics. Agricultural Water Management, 168, 56–67. https://doi.org/https://doi.org/10.1016/j.agwat.2016.01.020
  • 57. Zhong, L., Hu, L., Zhou, H., Tao, X. (2019). Deep learning based winter wheat mapping using statistical data as ground references in Kansas and northern Texas, US. Remote Sensing of Environment, 233, 111411. https://doi.org/https://doi.org/10.1016/j.rse.2019.111411
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3eff4d83-f906-4c5d-b1e5-7bbb46fbb47c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.