Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Beton przewodzący prąd jako system samoodladzający
Języki publikacji
Abstrakty
Electrically conductive concrete (ECC) is an innovative cementitious composite. The principle of operation, conduction mechanisms, and the influence of conductive additives on mechanical and electrical parameters are discussed. Literature results indicate that the use of suitable conductive admixtures reduces the resistivity of such a concrete from 102–106 Ω·m to even below 10⁻¹ Ω·m (ECC), enabling effective heat generation. Examples of laboratory studies, pilot projects, and real-world implementations are presented, taking into account performance efficiency, durability, and practical applicability under winter conditions. Special attention is given to the implementation potential of ECC in Poland. Key technological, organizational, and economic barriers to ECC deployment are also identified, along with suggested directions for future research. ECC is considered to have strong potential to enhance infrastructure resilience to extreme weather events and to reduce winter maintenance costs.
Beton przewodzący prąd (ECC) to innowacyjny kompozyt cementowy. W artykule omówiono zasadę działania materiału, mechanizmy przewodnictwa oraz wpływ rodzaju domieszek przewodzących na parametry mechaniczne i elektryczne. Wyniki badań dostępnych w literaturze wskazują, że zastosowanie odpowiednich dodatków pozwala zmniejszyć rezystywność tradycyjnego betonu z 102-106 Ω·m do nawet 10⁻¹ Ω·m (ECC), co umożliwia efektywne wydzielanie ciepła. Przedstawiono również przykłady badań, wdrożeń pilotażowych i rzeczywistych, uwzględniając efektywność działania, trwałość oraz potencjał praktycznego zastosowania w warunkach zimowych. Szczególną uwagę poświęcono potencjałowi wdrożeniowemu ECC w Polsce. Zidentyfikowano najważniejsze bariery technologiczne, organizacyjne i ekonomiczne wdrażania ECC oraz wskazano potencjalne kierunki dalszych badań. Ocenia się, że ECC umożliwia zwiększanie odporności infrastruktury na zjawiska ekstremalne oraz ograniczanie kosztów jej utrzymania w warunkach zimowych.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--10
Opis fizyczny
Bibliogr. 36 poz., il., tab.
Twórcy
autor
- Civil and Environmental Engineering, Massachusetts Institute of Technology
autor
- Civil and Environmental Engineering Department, Cullen College of Engineering, University of Houston
autor
- Instytut Badawczy Dróg i Mostów
autor
- Instytut Badawczy Dróg i Mostów
autor
- Instytut Badawczy Dróg i Mostów
Bibliografia
- [1] Wan C., Yang Z., Zhang D., Yan X., Fan S. Resilience in transportation systems: a systematic review and future directions. Transport reviews. 2018; https://doi.org/10.1080/01441647.2017.1383532.
- [2] Das J.T., Banerjee A., Puppala A.J., Chakraborty S. Sustainability and resilience in pavement infrastructure: a unified assessment framework. Environmental Geotechnics. 2022; https://doi.org/10.1680/jenge.19.00035.
- [3] Ding S., Dong S., Wang X., Ding S., Han B., Ou J. (2023). Self-heating ultra-high performance concrete with stainless steel wires for active deicing and snow-melting of transportation infrastructures. Cement and Concrete Composites. 2023; https://doi.org/10.1016/j.cemconcomp.2023.105005.
- [4] Król M. Łatwe technologie na trudne czasy – metody wzmacniania podłoża w budownictwie infrastrukturalnym. Nowoczesne Budownictwo Inżynieryjne. 2023; 2 (107): 36-38.
- [5] Anis M., Abdel-Raheem M. A review of electrically conductive cement concrete pavement for sustainable snow-removal and deicing: road safety in cold regions. Transportation Research Record. 2024; https://doi.org/10.1177/0361198123122521.
- [6] Moman, A., Nassiri, S. Smart and environmentally friendly winter maintenance solutions for safe winter mobility: Use of a microwave method to prototype electrically conductive concrete (Final Project Report No. 2018-S-WSU-3). Pacific Northwest Transportation Consortium (PacTrans), Washington State University.
- [7] Bebłacz D. Zimowe utrzymanie nawierzchni betonowych. Budownictwo, Technologie, Architektura. 2008; 1: 45-47.
- [8] Reiterman P., Keppert M. Effect of various de-icers containing chloride ions on scaling resistance and chloride penetration depth of highway concrete. Roads and Bridges – Drogi i Mosty. 2020; https://doi.org/10.7409/rabdim.020.003.
- [9] Chanut N., Stefaniuk D., Weaver J.C., Zhu Y., Shao-Horn Y., Masic A., Ulm F.J. Carbon-cement supercapacitors as a scalable bulk energy storage solution. Proceedings of the National Academy of Sciences. 2023; https://doi.org/10.1073/pnas.2304318120.
- [10] Han B., Zhang L., Ou J. Smart and multifunctional concrete toward sustainable infrastructures (Vol. 399). Singapore: Springer; 2017.
- [11] Oumer A., Lee C., Ahn E., Gwon S. Review on self-heating electrically conductive cementitious composites: focus on deicing and electrical curing. Construction and Building Materials. 2024; https://doi.org/10.1016/j.conbuildmat.2024.137232.
- [12] Wang J., An J., Li Y., Xiang Y., Xiao Q., Tang Z., Long G. Influencing factors of the temperature rise of direct electric curing concrete and its effect on concrete properties. Construction and Building Materials. 2024; https://doi.org/10.1016/j.conbuildmat.2024.137110
- [13] Fulham-Lebrasseur R., Sorelli L., Conciatori D. Development of electrically conductive concrete and mortars with hybrid conductive inclusions. Construction and Building Materials. 2020; https://doi.org/10.1016/j.conbuildmat.2019.117470.
- [14] Soliman N.A., Chanut N., Deman V., Lallas Z., Ulm F.J. Electric energy dissipation and electric tortuosity in electron conductive cement-based materials. Physical Review Materials. 2020; https://doi.org/10.1103/PhysRevMaterials.4.125401
- [15] Azarsa P., Gupta, R. Electrical resistivity of concrete for durability evaluation: a review. Advances in Materials Science and Engineering. 2017; https://doi.org/10.1155/2017/8453095
- [16] Wen S., Chung D.D.L. Double percolation in the electrical conduction in carbon fiber reinforced cement-based materials. Carbon. 2007; https://doi.org/10.1016/j.carbon.2006.09.031.
- [17] Ashby M.F., Shercliff H., Cebon D. Materials: Engineering, science, processing and design (4th ed.). Oxford: Butterworth-Heinemann; 2018.
- [18] Abdualla H. Design, construction, and performance of heated concrete pavements system (Doctoral dissertation, Iowa State University; 2018).
- [19] Stefaniuk D., Weaver J.C., Admir Masic A., Ulm F.J. Next-generation concrete: Combining load bearing and energy storage solutions; https://bpb-us-e1.wpmucdn.com/sites.mit.edu/dist/c/478/files/2024/09/ec%5E3-Overview.pdf
- [20] Malakooti A., Sadati S., Ceylan H., Kim S., Cetin K.S., Taylor P.C., Mina M., Cetin B., Theh W.S. Self-Heating Electrically Conductive Concrete Demonstration Project. Institute for Transportation, Ames, IA; 2021.
- [21] Susanto A., Koleva D.A., Copuroglu O., van Beek K., van Breugel K. (2013). Mechanical, electrical and microstructural properties of cement-based materials in conditions of stray current flow. Journal of Advanced Concrete Technology. 2013; https://doi.org/10.3151/jact.11.119
- [22] Peng Y., Gong F., Wang Z., Zhao Y., Jin W., Meng T., Maekawa K.. Experimental study on time-dependent DC resistivity of cement-based material considering microstructure and ion concentration. 2023; https://doi.org/10.1016/j.conbuildmat.2022.129830
- [23] Malakooti A., Theh W.S., Sadati S.S., Ceylan H., Kim S., Mina M., Taylor P.C. Design and full-scale implementation of the largest operational electrically conductive concrete heated pavement system. Construction and Building Materials. 2020; https://doi.org/10.1016/j.conbuildmat.2020.119229.
- [24] https://www.uta.edu/news/news-releases/2022/11/08/green-concrete-konsta-gdoutos
- [25] Tuan C.Y. Implementation of conductive concrete for deicing (Roca Bridge); https://digitalcommons.unomaha.edu/cgi/viewcontent.cgi?article=1000& context=civilengfacproc
- [26] Tuan C.Y., and Yehia S.A. Implementation of Conductive Concrete Overlay for Bridge Deck Deicing at Roca, Nebraska. (2004). Civil Engineering Faculty Proceedings & Presentations. 2004; 3: 363-378
- [27] Gwon S., Kim H., & Shin M. Self-heating characteristics of electrically conductive cement composites with carbon black and carbon fiber. Cement and Concrete Composites. 2023; https://doi.org/10.1016/j.cemconcomp.2023.104942.
- [28] Gwon S., Moon J., Shin M. Self-heating capacity of electrically conductive cement composites: Effects of curing conditions. Construction and Building Materials. 2022; https://doi.org/10.1016/j.conbuildmat.2022.129087.
- [29] Maglogianni M.E. Cement-Based Nanocomposites with Tunable Electrical and Thermal Conductivity (Doctoral dissertation, The University of Texas at Arlington; 2023).
- [30] Yehia S.A., Tuan C.Y. Thin Conductive Concrete Overlay for Bridge Deck Deicing and Anti-Icing. Transportation Research Record. 2000; https://doi.org/10.3141/1698-07.
- [31] https://www.gov.pl/web/gddkia/podsumowanie-zimy-2024/2025
- [32] https://www.rynekinfrastruktury.pl/wiadomosci/intermodal-i-logistyka/rekordowy-koszt-zimowego-utrzymania-lotniska-chopina-17250.html.
- [33] https://biznes.o2.pl/biznes/miliony-zlotych-tyle-kosztuje-utrzymanie-lotniska-chopina-7087556233833216a
- [34] Su K., Li J., Fu H. Smart city and the applications. In 2011 international conference on electronics, communications and control (ICECC). 2011; https://doi.org/10.1109/ICECC.2011.6066743.
- [35] Strategia Zrównoważonego Rozwoju Transportu do 2030 roku. Załącznik do uchwały nr 105/2009 Rady Ministrów z 24 września 2019 r.
- [36] Polityka energetyczna Polski do 2040 r. Załącznik do uchwały nr 22/2021 Rady Ministrów z 2 lutego 2021 r., Warszawa 2021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3efec9ca-b5ea-4e8b-9b4d-4221478617df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.